Journal of Topology最新文献

筛选
英文 中文
A new approach to twisted homological stability with applications to congruence subgroups 一种扭同调稳定性的新方法及其在同余子群上的应用
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-11-21 DOI: 10.1112/topo.12316
Andrew Putman
{"title":"A new approach to twisted homological stability with applications to congruence subgroups","authors":"Andrew Putman","doi":"10.1112/topo.12316","DOIUrl":"https://doi.org/10.1112/topo.12316","url":null,"abstract":"<p>We introduce a new method for proving twisted homological stability, and use it to prove such results for symmetric groups and general linear groups. In addition to sometimes slightly improving the stable range given by the traditional method (due to Dwyer), it is easier to adapt to nonstandard situations. As an illustration of this, we generalize to <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>GL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{GL}_n$</annotation>\u0000 </semantics></math> of many rings <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> a theorem of Borel that says that passing from <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>GL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{GL}_n$</annotation>\u0000 </semantics></math> of a number ring to a finite-index subgroup does not change the rational cohomology. Charney proved this generalization for trivial coefficients, and we extend it to twisted coefficients.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 4","pages":"1315-1388"},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Motivic Pontryagin classes and hyperbolic orientations 动机庞特里亚金类和双曲方向
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-11-21 DOI: 10.1112/topo.12317
Olivier Haution
{"title":"Motivic Pontryagin classes and hyperbolic orientations","authors":"Olivier Haution","doi":"10.1112/topo.12317","DOIUrl":"https://doi.org/10.1112/topo.12317","url":null,"abstract":"<p>We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups <math>\u0000 <semantics>\u0000 <mo>GL</mo>\u0000 <annotation>$operatorname{GL}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <msup>\u0000 <mo>SL</mo>\u0000 <mi>c</mi>\u0000 </msup>\u0000 <annotation>$operatorname{SL}^c$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mo>SL</mo>\u0000 <annotation>$operatorname{SL}$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mo>Sp</mo>\u0000 <annotation>$operatorname{Sp}$</annotation>\u0000 </semantics></math>). We show that hyperbolic orientations of <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that <math>\u0000 <semantics>\u0000 <mo>GL</mo>\u0000 <annotation>$operatorname{GL}$</annotation>\u0000 </semantics></math>-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the étale classifying space <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>BGL</mo>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$operatorname{BGL}_n$</annotation>\u0000 </semantics></math>. Finally, we construct the universal hyperbolically oriented <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum <math>\u0000 <semantics>\u0000 <mo>MGL</mo>\u0000 <annotation>$operatorname{MGL}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 4","pages":"1423-1474"},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12317","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the motivic Segal conjecture 关于motivic-Segal猜想
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-09-06 DOI: 10.1112/topo.12311
Thomas Gregersen, John Rognes
{"title":"On the motivic Segal conjecture","authors":"Thomas Gregersen,&nbsp;John Rognes","doi":"10.1112/topo.12311","DOIUrl":"10.1112/topo.12311","url":null,"abstract":"<p>We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$mu _ell$</annotation>\u0000 </semantics></math> of <math>\u0000 <semantics>\u0000 <mi>ℓ</mi>\u0000 <annotation>$ell$</annotation>\u0000 </semantics></math>th roots of unity, where <math>\u0000 <semantics>\u0000 <mi>ℓ</mi>\u0000 <annotation>$ell$</annotation>\u0000 </semantics></math> is any prime. To achieve this we develop motivic Singer constructions associated to the symmetric group <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$S_ell$</annotation>\u0000 </semantics></math> and to <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mi>ℓ</mi>\u0000 </msub>\u0000 <annotation>$mu _ell$</annotation>\u0000 </semantics></math>, and introduce a delayed limit Adams spectral sequence.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1258-1313"},"PeriodicalIF":1.1,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45024268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Homotopy of manifolds stabilized by projective spaces 射影空间稳定流形的同构性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-09-06 DOI: 10.1112/topo.12313
Ruizhi Huang, Stephen Theriault
{"title":"Homotopy of manifolds stabilized by projective spaces","authors":"Ruizhi Huang,&nbsp;Stephen Theriault","doi":"10.1112/topo.12313","DOIUrl":"10.1112/topo.12313","url":null,"abstract":"<p>We study the homotopy of the connected sum of a manifold with a projective space, viewed as a typical way to stabilize manifolds. In particular, we show a loop homotopy decomposition of a manifold after stabilization by a projective space, and provide concrete examples. To do this, we trace the effect in homotopy theory of surgery on certain product manifolds by showing a loop homotopy decomposition after localization away from the order of the image of the classical <math>\u0000 <semantics>\u0000 <mi>J</mi>\u0000 <annotation>$J$</annotation>\u0000 </semantics></math>-homomorphism.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1237-1257"},"PeriodicalIF":1.1,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12313","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48207005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Equivariant knots and knot Floer homology 等变节和结花同源
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-09-05 DOI: 10.1112/topo.12312
Irving Dai, Abhishek Mallick, Matthew Stoffregen
{"title":"Equivariant knots and knot Floer homology","authors":"Irving Dai,&nbsp;Abhishek Mallick,&nbsp;Matthew Stoffregen","doi":"10.1112/topo.12312","DOIUrl":"10.1112/topo.12312","url":null,"abstract":"We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group.","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1167-1236"},"PeriodicalIF":1.1,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42949514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Lagrangian cobordism functor in microlocal sheaf theory I 微局部簇理论I中的拉格朗日共基函子
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-09-04 DOI: 10.1112/topo.12310
Wenyuan Li
{"title":"Lagrangian cobordism functor in microlocal sheaf theory I","authors":"Wenyuan Li","doi":"10.1112/topo.12310","DOIUrl":"10.1112/topo.12310","url":null,"abstract":"&lt;p&gt;Let &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;±&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Lambda _pm$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be Legendrian submanifolds in the cosphere bundle &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$T^{*,infty }M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Given a Lagrangian cobordism &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;annotation&gt;$L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of Legendrians from &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Lambda _-$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Lambda _+$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, we construct a functor &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Φ&lt;/mi&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;*&lt;/mo&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Sh&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Sh&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;⊗&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mo&gt;*&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/m","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1113-1166"},"PeriodicalIF":1.1,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12310","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46583482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Smoothing finite-order bilipschitz homeomorphisms of 3-manifolds 3流形的光滑有限阶bilipschitz同胚
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-09-02 DOI: 10.1112/topo.12309
Lucien Grillet
{"title":"Smoothing finite-order bilipschitz homeomorphisms of 3-manifolds","authors":"Lucien Grillet","doi":"10.1112/topo.12309","DOIUrl":"10.1112/topo.12309","url":null,"abstract":"<p>We show that, for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ε</mi>\u0000 <mo>=</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>4000</mn>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation>$varepsilon =frac{1}{4000}$</annotation>\u0000 </semantics></math>, any action of a finite cyclic group by <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>ε</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(1+varepsilon )$</annotation>\u0000 </semantics></math>-bilipschitz homeomorphisms on a closed 3-manifold is conjugated to a smooth action.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1093-1112"},"PeriodicalIF":1.1,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47990972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The top homology group of the genus 3 Torelli group 属3 Torelli群的顶部同源群
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-08-26 DOI: 10.1112/topo.12308
Igor A. Spiridonov
{"title":"The top homology group of the genus 3 Torelli group","authors":"Igor A. Spiridonov","doi":"10.1112/topo.12308","DOIUrl":"10.1112/topo.12308","url":null,"abstract":"&lt;p&gt;The Torelli group of a genus &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;annotation&gt;$g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; oriented surface &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$Sigma _g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the subgroup &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathcal {I}_g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of the mapping class group &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Mod&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm Mod}(Sigma _g)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; consisting of all mapping classes that act trivially on &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm H}_1(Sigma _g, mathbb {Z})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The quotient group &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Mod&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm Mod}(Sigma _g) / mathcal {I}_g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is isomorphic to the symplectic group &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Sp&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm Sp}(2g, mathbb {Z})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The cohomological dimension of the group &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathcal {I}_g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; equ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"1048-1092"},"PeriodicalIF":1.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43984189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical properties of convex cocompact actions in projective space 射影空间中凸紧作用的动力学性质
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-08-02 DOI: 10.1112/topo.12307
Theodore Weisman
{"title":"Dynamical properties of convex cocompact actions in projective space","authors":"Theodore Weisman","doi":"10.1112/topo.12307","DOIUrl":"10.1112/topo.12307","url":null,"abstract":"<p>We give a dynamical characterization of convex cocompact group actions on properly convex domains in projective space in the sense of Danciger–Guéritaud–Kassel: we show that convex cocompactness in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {R}mathrm{P}^d$</annotation>\u0000 </semantics></math> is equivalent to an expansion property of the group about its limit set, occurring in different Grassmannians. As an application, we give a sufficient and necessary condition for convex cocompactness for groups that are hyperbolic relative to a collection of convex cocompact subgroups. We show that convex cocompactness in this situation is equivalent to the existence of an equivariant homeomorphism from the Bowditch boundary to the quotient of the limit set of the group by the limit sets of its peripheral subgroups.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"990-1047"},"PeriodicalIF":1.1,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43304379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Automorphisms of procongruence curve and pants complexes 前同余曲线与裤子复合体的自同构
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-07-19 DOI: 10.1112/topo.12306
Marco Boggi, Louis Funar
{"title":"Automorphisms of procongruence curve and pants complexes","authors":"Marco Boggi,&nbsp;Louis Funar","doi":"10.1112/topo.12306","DOIUrl":"10.1112/topo.12306","url":null,"abstract":"<p>In this paper we study the automorphism group of the procongruence mapping class group through its action on the associated procongruence curve and pants complexes. Our main result is a rigidity theorem for the procongruence completion of the pants complex. As an application we prove that moduli stacks of smooth algebraic curves satisfy a weak anabelian property in the procongruence setting.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 3","pages":"936-989"},"PeriodicalIF":1.1,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47340177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信