计算机科学最新文献

筛选
英文 中文
Multi-level feature fusion networks for smoke recognition in remote sensing imagery. 多尺度特征融合网络用于遥感图像烟雾识别。
IF 6 1区 计算机科学
Neural Networks Pub Date : 2025-04-01 Epub Date: 2025-01-04 DOI: 10.1016/j.neunet.2024.107112
Yupeng Wang, Yongli Wang, Zaki Ahmad Khan, Anqi Huang, Jianghui Sang
{"title":"Multi-level feature fusion networks for smoke recognition in remote sensing imagery.","authors":"Yupeng Wang, Yongli Wang, Zaki Ahmad Khan, Anqi Huang, Jianghui Sang","doi":"10.1016/j.neunet.2024.107112","DOIUrl":"10.1016/j.neunet.2024.107112","url":null,"abstract":"<p><p>Smoke is a critical indicator of forest fires, often detectable before flames ignite. Accurate smoke identification in remote sensing images is vital for effective forest fire monitoring within Internet of Things (IoT) systems. However, existing detection methods frequently falter in complex real-world scenarios, where variable smoke shapes and sizes, intricate backgrounds, and smoke-like phenomena (e.g., clouds and haze) lead to missed detections and false alarms. To address these challenges, we propose the Multi-level Feature Fusion Network (MFFNet), a novel framework grounded in contrastive learning. MFFNet begins by extracting multi-scale features from remote sensing images using a pre-trained ConvNeXt model, capturing information across different levels of granularity to accommodate variations in smoke appearance. The Attention Feature Enhancement Module further refines these multi-scale features, enhancing fine-grained, discriminative attributes relevant to smoke detection. Subsequently, the Bilinear Feature Fusion Module combines these enriched features, effectively reducing background interference and improving the model's ability to distinguish smoke from visually similar phenomena. Finally, contrastive feature learning is employed to improve robustness against intra-class variations by focusing on unique regions within the smoke patterns. Evaluated on the benchmark dataset USTC_SmokeRS, MFFNet achieves an accuracy of 98.87%. Additionally, our model demonstrates a detection rate of 94.54% on the extended E_SmokeRS dataset, with a low false alarm rate of 3.30%. These results highlight the effectiveness of MFFNet in recognizing smoke in remote sensing images, surpassing existing methodologies. The code is accessible at https://github.com/WangYuPeng1/MFFNet.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107112"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism. ICH-PRNet:基于联合注意相互作用机制的跨模式脑出血预后预测方法。
IF 6 1区 计算机科学
Neural Networks Pub Date : 2025-04-01 Epub Date: 2025-01-06 DOI: 10.1016/j.neunet.2024.107096
Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang
{"title":"ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.","authors":"Xinlei Yu, Ahmed Elazab, Ruiquan Ge, Jichao Zhu, Lingyan Zhang, Gangyong Jia, Qing Wu, Xiang Wan, Lihua Li, Changmiao Wang","doi":"10.1016/j.neunet.2024.107096","DOIUrl":"10.1016/j.neunet.2024.107096","url":null,"abstract":"<p><p>Accurately predicting intracerebral hemorrhage (ICH) prognosis is a critical and indispensable step in the clinical management of patients post-ICH. Recently, integrating artificial intelligence, particularly deep learning, has significantly enhanced prediction accuracy and alleviated neurosurgeons from the burden of manual prognosis assessment. However, uni-modal methods have shown suboptimal performance due to the intricate pathophysiology of the ICH. On the other hand, existing cross-modal approaches that incorporate tabular data have often failed to effectively extract complementary information and cross-modal features between modalities, thereby limiting their prognostic capabilities. This study introduces a novel cross-modal network, ICH-PRNet, designed to predict ICH prognosis outcomes. Specifically, we propose a joint-attention interaction encoder that effectively integrates computed tomography images and clinical texts within a unified representational space. Additionally, we define a multi-loss function comprising three components to comprehensively optimize cross-modal fusion capabilities. To balance the training process, we employ a self-adaptive dynamic prioritization algorithm that adjusts the weights of each component, accordingly. Our model, through these innovative designs, establishes robust semantic connections between modalities and uncovers rich, complementary cross-modal information, thereby achieving superior prediction results. Extensive experimental results and comparisons with state-of-the-art methods on both in-house and publicly available datasets unequivocally demonstrate the superiority and efficacy of the proposed method. Our code is at https://github.com/YU-deep/ICH-PRNet.git.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107096"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identity Model Transformation for boosting performance and efficiency in object detection network. 身份模型转换提高目标检测网络的性能和效率。
IF 6 1区 计算机科学
Neural Networks Pub Date : 2025-04-01 Epub Date: 2024-12-31 DOI: 10.1016/j.neunet.2024.107098
Zhongyuan Lu, Jin Liu, Miaozhong Xu
{"title":"Identity Model Transformation for boosting performance and efficiency in object detection network.","authors":"Zhongyuan Lu, Jin Liu, Miaozhong Xu","doi":"10.1016/j.neunet.2024.107098","DOIUrl":"10.1016/j.neunet.2024.107098","url":null,"abstract":"<p><p>Modifying the structure of an existing network is a common method to further improve the performance of the network. However, modifying some layers in network often results in pre-trained weight mismatch, and fine-tune process is time-consuming and resource-inefficient. To address this issue, we propose a novel technique called Identity Model Transformation (IMT), which keep the output before and after transformation in an equal form by rigorous algebraic transformations. This approach ensures the preservation of the original model's performance when modifying layers. Additionally, IMT significantly reduces the total training time required to achieve optimal results while further enhancing network performance. IMT has established a bridge for rapid transformation between model architectures, enabling a model to quickly perform analytic continuation and derive a family of tree-like models with better performance. This model family possesses a greater potential for optimization improvements compared to a single model. Extensive experiments across various object detection tasks validated the effectiveness and efficiency of our proposed IMT solution, which saved 94.76% time in fine-tuning the basic model YOLOv4-Rot on DOTA 1.5 dataset, and by using the IMT method, we saw stable performance improvements of 9.89%, 6.94%, 2.36%, and 4.86% on the four datasets: AI-TOD, DOTA1.5, coco2017, and MRSAText, respectively.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107098"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142957832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic learning with multi-task DeepONet for efficient PDE problem solving. 协同学习与多任务DeepONet的高效PDE问题求解。
IF 6 1区 计算机科学
Neural Networks Pub Date : 2025-04-01 Epub Date: 2025-01-03 DOI: 10.1016/j.neunet.2024.107113
Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, George Em Karniadakis
{"title":"Synergistic learning with multi-task DeepONet for efficient PDE problem solving.","authors":"Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, George Em Karniadakis","doi":"10.1016/j.neunet.2024.107113","DOIUrl":"10.1016/j.neunet.2024.107113","url":null,"abstract":"<p><p>Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107113"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network. 基于归算和社会感知图卷积神经网络的推荐系统增强。
IF 6 1区 计算机科学
Neural Networks Pub Date : 2025-04-01 Epub Date: 2024-12-31 DOI: 10.1016/j.neunet.2024.107071
Azadeh Faroughi, Parham Moradi, Mahdi Jalili
{"title":"Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network.","authors":"Azadeh Faroughi, Parham Moradi, Mahdi Jalili","doi":"10.1016/j.neunet.2024.107071","DOIUrl":"10.1016/j.neunet.2024.107071","url":null,"abstract":"<p><p>Recommendation systems are vital tools for helping users discover content that suits their interests. Collaborative filtering methods are one of the techniques employed for analyzing interactions between users and items, which are typically stored in a sparse matrix. This inherent sparsity poses a challenge because it necessitates accurately and effectively filling in these gaps to provide users with meaningful and personalized recommendations. Our solution addresses sparsity in recommendations by incorporating diverse data sources, including trust statements and an imputation graph. The trust graph captures user relationships and trust levels, working in conjunction with an imputation graph, which is constructed by estimating the missing rates of each user based on the user-item matrix using the average rates of the most similar users. Combined with the user-item rating graph, an attention mechanism fine tunes the influence of these graphs, resulting in more personalized and effective recommendations. Our method consistently outperforms state-of-the-art recommenders in real-world dataset evaluations, underscoring its potential to strengthen recommendation systems and mitigate sparsity challenges.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107071"},"PeriodicalIF":6.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of emotional expressions on the popularity of discussion threads: evidence from Reddit
IF 5.9 3区 管理学
Internet Research Pub Date : 2025-03-06 DOI: 10.1108/intr-12-2023-1187
Mahdi Abouei, Nima Kordzadeh, Maryam Ghasemaghaei, Bilal Khan
{"title":"The impact of emotional expressions on the popularity of discussion threads: evidence from Reddit","authors":"Mahdi Abouei, Nima Kordzadeh, Maryam Ghasemaghaei, Bilal Khan","doi":"10.1108/intr-12-2023-1187","DOIUrl":"https://doi.org/10.1108/intr-12-2023-1187","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>Users contribute to online communities by posting and responding to discussion threads. Nonetheless, only a small fraction of threads gain popularity and shape community discourse. Prior studies have identified several factors driving thread popularity; however, despite their prevalence, the role of emotional expressions within discussion threads remains understudied. This study addresses this gap by investigating the impact of thread starters’ valence and embedded discrete emotions of anger, anxiety and sadness on thread popularity, drawing on the negativity bias and the emotion-as-social-information theories.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Using two samples from Reddit, this study employs negative binomial regression analysis to examine the hypothesized relationships.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The results demonstrate that negativity in thread starters significantly influences thread popularity; however, the expression of discrete emotions impacts popularity variously. In some contexts, such as COVID-19 vaccination subreddits, embedded anger in thread starters decreases thread popularity, whereas anxiety and sad expressions enhance it. In other contexts, such as professional discussions (e.g. r/Medicine subreddit), anger and anxiety expressions increase thread popularity, while sad expressions have no significant influence.</p><!--/ Abstract__block -->\u0000<h3>Research limitations/implications</h3>\u0000<p>The study is limited by its focus on specific emotions and contexts. Future research could examine a broader range of emotions, post-content modalities and the impact of cultural and linguistic differences.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>This study contributes to theory by offering a new definition of thread popularity and enhancing our understanding of the impact of emotions in online discussions. It also provides practical implications for online community members and moderators seeking to promote discussion posts that help achieve community goals.</p><!--/ Abstract__block -->","PeriodicalId":54925,"journal":{"name":"Internet Research","volume":"23 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven federated learning in drug discovery with knowledge distillation
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2025-03-05 DOI: 10.1038/s42256-025-00991-2
Thierry Hanser, Ernst Ahlberg, Alexander Amberg, Lennart T. Anger, Chris Barber, Richard J. Brennan, Alessandro Brigo, Annie Delaunois, Susanne Glowienke, Nigel Greene, Laura Johnston, Daniel Kuhn, Lara Kuhnke, Jean-François Marchaland, Wolfgang Muster, Jeffrey Plante, Friedrich Rippmann, Yogesh Sabnis, Friedemann Schmidt, Ruud van Deursen, Stéphane Werner, Angela White, Joerg Wichard, Tomoya Yukawa
{"title":"Data-driven federated learning in drug discovery with knowledge distillation","authors":"Thierry Hanser, Ernst Ahlberg, Alexander Amberg, Lennart T. Anger, Chris Barber, Richard J. Brennan, Alessandro Brigo, Annie Delaunois, Susanne Glowienke, Nigel Greene, Laura Johnston, Daniel Kuhn, Lara Kuhnke, Jean-François Marchaland, Wolfgang Muster, Jeffrey Plante, Friedrich Rippmann, Yogesh Sabnis, Friedemann Schmidt, Ruud van Deursen, Stéphane Werner, Angela White, Joerg Wichard, Tomoya Yukawa","doi":"10.1038/s42256-025-00991-2","DOIUrl":"https://doi.org/10.1038/s42256-025-00991-2","url":null,"abstract":"<p>A main challenge for artificial intelligence in scientific research is ensuring access to sufficient, high-quality data for the development of impactful models. Despite the abundance of public data, the most valuable knowledge often remains embedded within confidential corporate data silos. Although industries are increasingly open to sharing non-competitive insights, such collaboration is often constrained by the confidentiality of the underlying data. Federated learning makes it possible to share knowledge without compromising data privacy, but it has notable limitations. Here, we introduce FLuID (federated learning using information distillation), a data-centric application of federated distillation tailored to drug discovery aiming to preserve data privacy. We validate FLuID in two experiments, first involving public data simulating a virtual consortium and second in a real-world research collaboration between eight pharmaceutical companies. Although the alignment of the models with the partner specific domain remains challenging, the data-driven nature of FLuID offers several avenues to mitigate domain shift. FLuID fosters knowledge sharing among pharmaceutical organizations, paving the way for a new generation of models with enhanced performance and an expanded applicability domain in biological activity predictions.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"211 1","pages":""},"PeriodicalIF":23.8,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-channel graph-level anomaly detection method based on multi-graph representation learning
IF 3.4 2区 计算机科学
Applied Intelligence Pub Date : 2025-03-04 DOI: 10.1007/s10489-024-05852-w
Yongjun Jing, Hao Wang, Jiale Chen, Xu Chen
{"title":"Dual-channel graph-level anomaly detection method based on multi-graph representation learning","authors":"Yongjun Jing,&nbsp;Hao Wang,&nbsp;Jiale Chen,&nbsp;Xu Chen","doi":"10.1007/s10489-024-05852-w","DOIUrl":"10.1007/s10489-024-05852-w","url":null,"abstract":"<div><p>Graph-level anomaly detection plays a crucial role in anomaly identification by comparing and classifying the graph-level features of normal and anomalous graphs. Despite advancements, existing methods often suffer from low detection rates and high false-positive rates when dealing with sparse anomalous data. To address this limitation, we propose a dual-channel graph-level anomaly detection model that utilizes two graph isomorphic networks to separately learn from labeled anomalous data and unlabeled normal data. This model enhances the identification of unlabeled anomalies by learning from both types of data through separate channels. Furthermore, to enable the model to be applicable to complex graph types in graph-level anomaly detection applications, we introduce a novel multi-graph representation learning method that can transform multi-graphs into a simplified graph representation. We have rigorously evaluated the proposed model on 6 public datasets, and the experimental results demonstrate the effectiveness of the model, with significant performance improvements over 9 baseline models.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid ladybug Hawk optimization-enabled deep learning for multimodal Parkinson's disease classification using voice signals and hand-drawn images.
IF 1.1 3区 计算机科学
Network-Computation in Neural Systems Pub Date : 2025-03-04 DOI: 10.1080/0954898X.2025.2457955
Shanthini Shanmugam, Chandrasekar Arumugam
{"title":"Hybrid ladybug Hawk optimization-enabled deep learning for multimodal Parkinson's disease classification using voice signals and hand-drawn images.","authors":"Shanthini Shanmugam, Chandrasekar Arumugam","doi":"10.1080/0954898X.2025.2457955","DOIUrl":"https://doi.org/10.1080/0954898X.2025.2457955","url":null,"abstract":"<p><p>PD is a progressive neurodegenerative disorder that leads to gradual motor impairments. Early detection is critical for slowing the disease's progression and providing patients access to timely therapies. However, accurately detecting PD in its early stages remains challenging. This study aims to develop an optimized deep learning model for PD classification using voice signals and hand-drawn spiral images, leveraging a ZFNet-LHO-DRN. The proposed model first preprocesses the input voice signal using a Gaussian filter to remove noise. Features are then extracted from the preprocessed signal and passed to ZFNet to generate output-1. For the hand-drawn spiral image, preprocessing is performed with a bilateral filter, followed by image augmentation. Here also, the features are extracted and forwarded to DRN to form output-2. Both classifiers are trained using the LHO algorithm. Finally, from the output-1 and output-2, the best one is selected based on the majority voting. The ZFNet-LHO-DRN model demonstrated excellent performance by achieving a premium accuracy of 89.8%, a NPV of 89.7%, a PPV of 89.7%, a TNR of 89.3%, and a TPR of 90.1%. The model's high accuracy and performance indicate its potential as a valuable tool for assisting in the early diagnosis of PD.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-43"},"PeriodicalIF":1.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning
IF 7.8 1区 计算机科学
IEEE Transactions on Robotics Pub Date : 2025-03-04 DOI: 10.1109/tro.2025.3543267
Sha Lu, Xuecheng Xu, Dongkun Zhang, Yuxuan Wu, Haojian Lu, Xieyuanli Chen, Rong Xiong, Yue Wang
{"title":"RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning","authors":"Sha Lu, Xuecheng Xu, Dongkun Zhang, Yuxuan Wu, Haojian Lu, Xieyuanli Chen, Rong Xiong, Yue Wang","doi":"10.1109/tro.2025.3543267","DOIUrl":"https://doi.org/10.1109/tro.2025.3543267","url":null,"abstract":"","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"6 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信