Bobby Bodenheimer, V. Popescu, J. Quarles, Lili Wang
{"title":"IEEE VR 2023 Message from the Program Chairs and Guest Editors","authors":"Bobby Bodenheimer, V. Popescu, J. Quarles, Lili Wang","doi":"10.1109/tvcg.2021.3067835","DOIUrl":"https://doi.org/10.1109/tvcg.2021.3067835","url":null,"abstract":"","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"1 1","pages":"xiv-xv"},"PeriodicalIF":5.2,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/tvcg.2021.3067835","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41729172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huijie Guo, Meijun Liu, Bowen Yang, Ye Sun, Huamin Qu, Lei Shi
{"title":"RankFIRST: Visual Analysis for Factor Investment By Ranking Stock Timeseries.","authors":"Huijie Guo, Meijun Liu, Bowen Yang, Ye Sun, Huamin Qu, Lei Shi","doi":"10.1109/TVCG.2022.3209414","DOIUrl":"10.1109/TVCG.2022.3209414","url":null,"abstract":"<p><p>In the era of quantitative investment, factor-based investing models are widely adopted in the construction of stock portfolios. These models explain the performance of individual stocks by a set of financial factors, e.g., market beta and company size. In industry, open investment platforms allow the online building of factor-based models, yet set a high bar on the engineering expertise of end-users. State-of-the-art visualization systems integrate the whole factor investing pipeline, but do not directly address domain users' core requests on ranking factors and stocks for portfolio construction. The current model lacks explainability, which downgrades its credibility with stock investors. To fill the gap in modeling, ranking, and visualizing stock time series for factor investment, we designed and implemented a visual analytics system, namely RankFIRST. The system offers built-in support for an established factor collection and a cross-sectional regression model viable for human interpretation. A hierarchical slope graph design is introduced according to the desired characteristics of good factors for stock investment. A novel firework chart is also invented extending the well-known candlestick chart for stock time series. We evaluated the system on the full-scale Chinese stock market data in the recent 30 years. Case studies and controlled user evaluation demonstrate the superiority of our system on factor investing, in comparison to both passive investing on stock indices and existing stock market visual analytics tools.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"PP ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data - An Algorithm and A Benchmark","authors":"P. Guillou, Jules Vidal, Julien Tierny","doi":"10.48550/arXiv.2206.13932","DOIUrl":"https://doi.org/10.48550/arXiv.2206.13932","url":null,"abstract":"This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K, with d ≤ 3. Our work revisits the seminal algorithm \"PairSimplices\" [31], [103] with discrete Morse theory (DMT) [34], [80], which greatly reduces the number of input simplices to consider. Further, we also extend to DMT and accelerate the stratification strategy described in \"PairSimplices\" [31], [103] for the fast computation of the 0th and (d-1)th diagrams, noted D0(f) and Dd-1(f). Minima-saddle persistence pairs ( D0(f)) and saddle-maximum persistence pairs ( Dd-1(f)) are efficiently computed by processing , with a Union-Find , the unstable sets of 1-saddles and the stable sets of (d-1)-saddles. We provide a detailed description of the (optional) handling of the boundary component of K when processing (d-1)-saddles. This fast pre-computation for the dimensions 0 and (d-1) enables an aggressive specialization of [4] to the 3D case, which results in a drastic reduction of the number of input simplices for the computation of D1(f), the intermediate layer of the sandwich. Finally, we document several performance improvements via shared-memory parallelism. We provide an open-source implementation of our algorithm for reproducibility purposes. We also contribute a reproducible benchmark package, which exploits three-dimensional data from a public repository and compares our algorithm to a variety of publicly available implementations. Extensive experiments indicate that our algorithm improves by two orders of magnitude the time performance of the seminal \"PairSimplices\" algorithm it extends. Moreover, it also improves memory footprint and time performance over a selection of 14 competing approaches, with a substantial gain over the fastest available approaches, while producing a strictly identical output. We illustrate the utility of our contributions with an application to the fast and robust extraction of persistent 1-dimensional generators on surfaces, volume data and high-dimensional point clouds.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41751984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan W. Kelly, Melynda Hoover, Taylor A. Doty, A. Renner, L. Cherep, Stephen B Gilbert
{"title":"Remote research on locomotion interfaces for virtual reality: Replication of a lab-based study on teleporting interfaces","authors":"Jonathan W. Kelly, Melynda Hoover, Taylor A. Doty, A. Renner, L. Cherep, Stephen B Gilbert","doi":"10.31234/osf.io/wqcuf","DOIUrl":"https://doi.org/10.31234/osf.io/wqcuf","url":null,"abstract":"The wide availability of consumer-oriented virtual reality (VR) equipment has enabled researchers to recruit existing VR owners to participate remotely using their own equipment. Yet, there are many differences between lab environments and home environments, as well as differences between participant samples recruited for lab studies and remote studies. This paper replicates a lab-based experiment on VR locomotion interfaces using a remote sample. Participants completed a triangle-completion task (travel two path legs, then point to the path origin) using their own VR equipment in a remote, unsupervised setting. Locomotion was accomplished using two versions of the teleporting interface varying in availability of rotational self-motion cues. The size of the traveled path and the size of the surrounding virtual environment were also manipulated. Results from remote participants largely mirrored lab results, with overall better performance when rotational self-motion cues were available. Some differences also occurred, including a tendency for remote participants to rely less on nearby landmarks, perhaps due to increased competence with using the teleporting interface to update self-location. This replication study provides insight for VR researchers on aspects of lab studies that may or may not replicate remotely.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"13 4","pages":"2037-2046"},"PeriodicalIF":5.2,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41306297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filip Opaleny, Pavol Ulbrich, Joan Planas-Iglesias, Jan Byska, Gaspar P Pinto, David Bednar, Katarina FurmanovA, Barbora KozlikovA
{"title":"LoopGrafter: Visual Support for the Grafting Workflow of Protein Loops.","authors":"Filip Opaleny, Pavol Ulbrich, Joan Planas-Iglesias, Jan Byska, Gaspar P Pinto, David Bednar, Katarina FurmanovA, Barbora KozlikovA","doi":"10.1109/TVCG.2021.3114755","DOIUrl":"10.1109/TVCG.2021.3114755","url":null,"abstract":"<p><p>In the process of understanding and redesigning the function of proteins in modern biochemistry, protein engineers are increasingly focusing on the exploration of regions in proteins called loops. Analyzing various characteristics of these regions helps the experts to design the transfer of the desired function from one protein to another. This process is denoted as loop grafting. As this process requires extensive manual treatment and currently there is no proper visual support for it, we designed LoopGrafter: a web-based tool that provides experts with visual support through all the loop grafting pipeline steps. The tool is logically divided into several phases, starting with the definition of two input proteins and ending with a set of grafted proteins. Each phase is supported by a specific set of abstracted 2D visual representations of loaded proteins and their loops that are interactively linked with the 3D view onto proteins. By sequentially passing through the individual phases, the user is shaping the list of loops that are potential candidates for loop grafting. In the end, the actual in-silico insertion of the loop candidates from one protein to the other is performed and the results are visually presented to the user. In this way, the fully computational rational design of proteins and their loops results in newly designed protein structures that can be further assembled and tested through in-vitro experiments. LoopGrafter was designed in tight collaboration with protein engineers, and its final appearance reflects many testing iterations. We showcase the contribution of LoopGrafter on a real case scenario and provide the readers with the experts' feedback, confirming the usefulness of our tool.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"PP ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39468468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"You or Me? Personality Traits Predict Sacrificial Decisions in an Accident Situation.","authors":"Ju Uijong, June Kang, Christian Wallraven","doi":"10.1109/TVCG.2019.2899227","DOIUrl":"https://doi.org/10.1109/TVCG.2019.2899227","url":null,"abstract":"<p><p>Emergency situations during car driving sometimes force the driver to make a sudden decision. Predicting these decisions will have important applications in updating risk analyses in insurance applications, but also can give insights for drafting autonomous vehicle guidelines. Studying such behavior in experimental settings, however, is limited by ethical issues as it would endanger peoples' lives. Here, we employed the potential of virtual reality (VR) to investigate decision-making in an extreme situation in which participants would have to sacrifice others in order to save themselves. In a VR driving simulation, participants first trained to complete a difficult course with multiple crossroads in which the wrong turn would lead the car to fall down a cliff. In the testing phase, obstacles suddenly appeared on the \"safe\" turn of a crossroad: for the control group, obstacles consisted of trees, whereas for the experimental group, they were pedestrians. In both groups, drivers had to decide between falling down the cliff or colliding with the obstacles. Results showed that differences in personality traits were able to predict this decision: in the experimental group, drivers who collided with the pedestrians had significantly higher psychopathy and impulsivity traits, whereas impulsivity alone was to some degree predictive in the control group. Other factors like heart rate differences, gender, video game expertise, and driving experience were not predictive of the emergency decision in either group. Our results show that self-interest related personality traits affect decision-making when choosing between preservation of self or others in extreme situations and showcase the potential of virtual reality in studying and modeling human decision-making.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"25 5","pages":"1898-1907"},"PeriodicalIF":5.2,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2899227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36997351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaan Aksit, Praneeth Chakravarthula, Kishore Rathinavel, Youngmo Jeong, Rachel Albert, Henry Fuchs, David Luebke
{"title":"Manufacturing Application-Driven Foveated Near-Eye Displays.","authors":"Kaan Aksit, Praneeth Chakravarthula, Kishore Rathinavel, Youngmo Jeong, Rachel Albert, Henry Fuchs, David Luebke","doi":"10.1109/TVCG.2019.2898781","DOIUrl":"https://doi.org/10.1109/TVCG.2019.2898781","url":null,"abstract":"<p><p>Traditional optical manufacturing poses a great challenge to near-eye display designers due to large lead times in the order of multiple weeks, limiting the abilities of optical designers to iterate fast and explore beyond conventional designs. We present a complete near-eye display manufacturing pipeline with a day lead time using commodity hardware. Our novel manufacturing pipeline consists of several innovations including a rapid production technique to improve surface of a 3D printed component to optical quality suitable for near-eye display application, a computational design methodology using machine learning and ray tracing to create freeform static projection screen surfaces for near-eye displays that can represent arbitrary focal surfaces, and a custom projection lens design that distributes pixels non-uniformly for a foveated near-eye display hardware design candidate. We have demonstrated untethered augmented reality near-eye display prototypes to assess success of our technique, and show that a ski-goggles form factor, a large monocular field of view (30<sup>o</sup>×55<sup>o</sup>), and a resolution of 12 cycles per degree can be achieved.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"25 5","pages":"1928-1939"},"PeriodicalIF":5.2,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898781","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37150908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeonseung Yu, Mojtaba Bemana, Marek Wernikowski, Michal Chwesiuk, Okan Tarhan Tursun, Gurprit Singh, Karol Myszkowski, Radoslaw Mantiuk, Hans-Peter Seidel, Piotr Didyk
{"title":"A Perception-driven Hybrid Decomposition for Multi-layer Accommodative Displays.","authors":"Hyeonseung Yu, Mojtaba Bemana, Marek Wernikowski, Michal Chwesiuk, Okan Tarhan Tursun, Gurprit Singh, Karol Myszkowski, Radoslaw Mantiuk, Hans-Peter Seidel, Piotr Didyk","doi":"10.1109/TVCG.2019.2898821","DOIUrl":"https://doi.org/10.1109/TVCG.2019.2898821","url":null,"abstract":"<p><p>Multi-focal plane and multi-layered light-field displays are promising solutions for addressing all visual cues observed in the real world. Unfortunately, these devices usually require expensive optimizations to compute a suitable decomposition of the input light field or focal stack to drive individual display layers. Although these methods provide near-correct image reconstruction, a significant computational cost prevents real-time applications. A simple alternative is a linear blending strategy which decomposes a single 2D image using depth information. This method provides real-time performance, but it generates inaccurate results at occlusion boundaries and on glossy surfaces. This paper proposes a perception-based hybrid decomposition technique which combines the advantages of the above strategies and achieves both real-time performance and high-fidelity results. The fundamental idea is to apply expensive optimizations only in regions where it is perceptually superior, e.g., depth discontinuities at the fovea, and fall back to less costly linear blending otherwise. We present a complete, perception-informed analysis and model that locally determine which of the two strategies should be applied. The prediction is later utilized by our new synthesis method which performs the image decomposition. The results are analyzed and validated in user experiments on a custom multi-plane display.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"25 5","pages":"1940-1950"},"PeriodicalIF":5.2,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898821","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37150909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Bertel, Neill D F Campbell, Christian Richardt
{"title":"MegaParallax: Casual 360° Panoramas with Motion Parallax.","authors":"Tobias Bertel, Neill D F Campbell, Christian Richardt","doi":"10.1109/TVCG.2019.2898799","DOIUrl":"https://doi.org/10.1109/TVCG.2019.2898799","url":null,"abstract":"<p><p>The ubiquity of smart mobile devices, such as phones and tablets, enables users to casually capture 360° panoramas with a single camera sweep to share and relive experiences. However, panoramas lack motion parallax as they do not provide different views for different viewpoints. The motion parallax induced by translational head motion is a crucial depth cue in daily life. Alternatives, such as omnidirectional stereo panoramas, provide different views for each eye (binocular disparity), but they also lack motion parallax as the left and right eye panoramas are stitched statically. Methods based on explicit scene geometry reconstruct textured 3D geometry, which provides motion parallax, but suffers from visible reconstruction artefacts. The core of our method is a novel multi-perspective panorama representation, which can be casually captured and rendered with motion parallax for each eye on the fly. This provides a more realistic perception of panoramic environments which is particularly useful for virtual reality applications. Our approach uses a single consumer video camera to acquire 200-400 views of a real 360° environment with a single sweep. By using novel-view synthesis with flow-based blending, we show how to turn these input views into an enriched 360° panoramic experience that can be explored in real time, without relying on potentially unreliable reconstruction of scene geometry. We compare our results with existing omnidirectional stereo and image-based rendering methods to demonstrate the benefit of our approach, which is the first to enable casual consumers to capture and view high-quality 360° panoramas with motion parallax.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"25 5","pages":"1828-1835"},"PeriodicalIF":5.2,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36997350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}