Journal of Proteome Research最新文献

筛选
英文 中文
prolfquapp ─ A User-Friendly Command-Line Tool Simplifying Differential Expression Analysis in Quantitative Proteomics.
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-23 DOI: 10.1021/acs.jproteome.4c00911
Witold E Wolski, Jonas Grossmann, Leonardo Schwarz, Peter Leary, Can Türker, Paolo Nanni, Ralph Schlapbach, Christian Panse
{"title":"<i>prolfquapp</i> ─ A User-Friendly Command-Line Tool Simplifying Differential Expression Analysis in Quantitative Proteomics.","authors":"Witold E Wolski, Jonas Grossmann, Leonardo Schwarz, Peter Leary, Can Türker, Paolo Nanni, Ralph Schlapbach, Christian Panse","doi":"10.1021/acs.jproteome.4c00911","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00911","url":null,"abstract":"<p><p>Mass spectrometry is a cornerstone of quantitative proteomics, enabling relative protein quantification and differential expression analysis (<i>DEA</i>) of proteins. As experiments grow in complexity, involving more samples, groups, and identified proteins, interactive differential expression analysis tools become impractical. The <i>prolfquapp</i> addresses this challenge by providing a command-line interface that simplifies <i>DEA</i>, making it accessible to nonprogrammers and seamlessly integrating it into workflow management systems. <i>Prolfquapp</i> streamlines data processing and result visualization by generating dynamic HTML reports that facilitate the exploration of differential expression results. These reports allow for investigating complex experiments, such as those involving repeated measurements or multiple explanatory variables. Additionally, <i>prolfquapp</i> supports various output formats, including XLSX files, <i>SummarizedExperiment</i> objects and rank files, for further interactive analysis using spreadsheet software, the <i>exploreDE</i> Shiny application, or gene set enrichment analysis software, respectively. By leveraging advanced statistical models from the <i>prolfqua</i> R package, <i>prolfquapp</i> offers a user-friendly, integrated solution for large-scale quantitative proteomics studies, combining efficient data processing with insightful, publication-ready outputs.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gel-Based Sample Fractionation with SP3-Purification for Top-Down Proteomics.
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-22 DOI: 10.1021/acs.jproteome.4c00941
Ayako Takemori, Naoyuki Sugiyama, Jake T Kline, Luca Fornelli, Nobuaki Takemori
{"title":"Gel-Based Sample Fractionation with SP3-Purification for Top-Down Proteomics.","authors":"Ayako Takemori, Naoyuki Sugiyama, Jake T Kline, Luca Fornelli, Nobuaki Takemori","doi":"10.1021/acs.jproteome.4c00941","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00941","url":null,"abstract":"<p><p>Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry. In this study, we developed a complete, robust, and simple sample preparation workflow named PEPPI-SP3 for top-down proteomics by combining PEPPI-MS with the magnetic bead-based protein purification approach used in SP3 (single-pot, solid-phase-enhanced sample preparation), now one of the standard sample preparation methods in bottom-up proteomics. In PEPPI-SP3, proteins extracted from the gel are collected on the surface of SP3 beads, washed with organic solvents, and recovered intact with 100 mM ammonium bicarbonate containing 0.05% (w/v) SDS. The recovered proteins are subjected to mass spectrometry after additional purification using an anion-exchange StageTip. Performance validation using human cell lysates showed a significant improvement in low-molecular-weight protein recovery with a lower coefficient of variation compared to conventional PEPPI workflows using organic solvent precipitation or ultrafiltration.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and Reagent-Free Analysis of Dried Blood Spot by Paper Spray Mass Spectrometry Reveals Sex: Implications in Forensic Investigations.
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-22 DOI: 10.1021/acs.jproteome.4c00798
Supratim Mondal, Uddeshya Pandey, Sourik Chakrabarti, Pragya Pahchan, Debasish Koner, Shibdas Banerjee
{"title":"Rapid and Reagent-Free Analysis of Dried Blood Spot by Paper Spray Mass Spectrometry Reveals Sex: Implications in Forensic Investigations.","authors":"Supratim Mondal, Uddeshya Pandey, Sourik Chakrabarti, Pragya Pahchan, Debasish Koner, Shibdas Banerjee","doi":"10.1021/acs.jproteome.4c00798","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00798","url":null,"abstract":"<p><p>Identifying sex from an unknown dried blood spot (DBS), especially when the corpse remains undiscovered, often provides valuable evidence in forensic casework. While DNA-based sex determination is a reliable method in forensic settings, it requires expensive reagents and is time-consuming. To develop a rapid reagent-free blood test for sex, we employed paper spray ionization mass spectrometry (PSI-MS) to capture sex-discriminatory lipid profiles from 200 DBS samples comprising 100 males and 100 females. We conducted a supervised machine learning (ML) analysis on all detected lipid signals to hunt biomarkers of sex within the data set. This analysis unveiled significant differences in specific sphingomyelin and phospholipid species levels between male and female DBS samples. Using the parsimonious set of 60 lipid signals, we constructed a classifier that achieved 100% overall accuracy in predicting sex from DBS on paper. Additionally, we assessed three-day-old air-exposed DBS on glass and granite surfaces, simulating the typical blood samples available for forensic investigations. Consequently, we achieved ∼92% overall sex prediction accuracy from the holdout test data set of DBS on glass and granite surfaces. As a highly sensitive detection tool, PSI-MS combined with ML has the potential to revolutionize forensic methods by rapidly analyzing blood molecules encoding personal information.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry.
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-22 DOI: 10.1021/acs.jproteome.4c00690
Huoming Zhang, Dalila Bensaddek
{"title":"Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry.","authors":"Huoming Zhang, Dalila Bensaddek","doi":"10.1021/acs.jproteome.4c00690","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00690","url":null,"abstract":"<p><p>We introduce here a novel approach, termed time-segmented acquisition (Seg), to enhance the identification of peptides and proteins in trapped ion mobility spectrometry (TIMS)-time-of-flight (TOF) mass spectrometry. Our method exploits the positive correlation between ion mobility values and reversed-phase liquid chromatography (LC) retention time to improve ion separation and resolution. By dividing the LC retention time into multiple segments and applying a segment-specific narrower ion mobility range within the TIMS tunnel, we achieved better separation and higher resolution of ion mobility. In comparison to conventional TIMS methods, which typically scan a static ion mobility range (either from 0.6 to 1.6 [Wide] or from 0.85 to 1.3 [Narrow], V × s/cm<sup>2</sup>), the Seg method demonstrates marked improvements in identification rates. Compared to Wide scanning, the Seg method increases peptide identifications by 17-27% and protein identifications by 6-16% depending on the gradient length and the sample load. The enhancement in peptide identification is even more pronounced when compared to Narrow scanning, with an increase of 34-86%. These findings highlight the potential of the Seg dda-PASEF method in expanding the capabilities of TIMS-TOF mass spectrometry, especially for peptide-focused analyses, such as post-translational modifications and peptidomics.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PeptideForest: Semisupervised Machine Learning Integrating Multiple Search Engines for Peptide Identification. 肽森林:半监督机器学习集成多个搜索引擎的肽识别。
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-22 DOI: 10.1021/acs.jproteome.4c00686
Tristan Ranff, Matthew Dennison, Jeroen Bédorf, Stefan Schulze, Nico Zinn, Marcus Bantscheff, Jasper J R M van Heugten, Christian Fufezan
{"title":"PeptideForest: Semisupervised Machine Learning Integrating Multiple Search Engines for Peptide Identification.","authors":"Tristan Ranff, Matthew Dennison, Jeroen Bédorf, Stefan Schulze, Nico Zinn, Marcus Bantscheff, Jasper J R M van Heugten, Christian Fufezan","doi":"10.1021/acs.jproteome.4c00686","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00686","url":null,"abstract":"<p><p>The first step in bottom-up proteomics is the assignment of measured fragmentation mass spectra to peptide sequences, also known as peptide spectrum matches. In recent years novel algorithms have pushed the assignment to new heights; unfortunately, different algorithms come with different strengths and weaknesses and choosing the appropriate algorithm poses a challenge for the user. Here we introduce PeptideForest, a semisupervised machine learning approach that integrates the assignments of multiple algorithms to train a random forest classifier to alleviate that issue. Additionally, PeptideForest increases the number of peptide-to-spectrum matches that exhibit a q-value lower than 1% by 25.2 ± 1.6% compared to MS-GF+ data on samples containing mixed HEK and <i>Escherichia coli</i> proteomes. However, an increase in quantity does not necessarily reflect an increase in quality and this is why we devised a novel approach to determine the quality of the assigned spectra through TMT quantification of samples with known ground truths. Thereby, we could show that the increase in PSMs below 1% q-value does not come with a decrease in quantification quality and as such PeptideForest offers a possibility to gain deeper insights into bottom-up proteomics. PeptideForest has been integrated into our pipeline framework Ursgal and can therefore be combined with a wide array of algorithms.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Bothropic Antivenom through a Reverse Antivenomics Approach. 通过反向抗蛇毒组学方法增强两性抗蛇毒血清。
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-21 DOI: 10.1021/acs.jproteome.4c01028
Tassia Chiarelli, Jackelinne Y Hayashi, Nathalia da Costa Galizio, Fernanda M S Casimiro, Ricardo Torquato, Aparecida S Tanaka, Karen de Morais-Zani, Anita M Tanaka-Azevedo, Alexandre K Tashima
{"title":"Enhancing the Bothropic Antivenom through a Reverse Antivenomics Approach.","authors":"Tassia Chiarelli, Jackelinne Y Hayashi, Nathalia da Costa Galizio, Fernanda M S Casimiro, Ricardo Torquato, Aparecida S Tanaka, Karen de Morais-Zani, Anita M Tanaka-Azevedo, Alexandre K Tashima","doi":"10.1021/acs.jproteome.4c01028","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c01028","url":null,"abstract":"<p><p>Antivenoms are the only effective treatment for snakebite envenomation and have saved countless lives over more than a century. Despite their value, antivenoms present risks of adverse reactions. Current formulations contain a fraction of nonspecific antibodies and serum proteins. While new promising candidates emerge as the next generation of antivenoms, it remains clear that animal-derived antivenoms will still play a critical role for years to come. In this study, we improved the bothropic antivenom (BAv), by capturing toxin-specific antibodies through affinity chromatography using immobilized <i>Bothrops jararaca</i> venom toxins. This process produced an improved antivenom (iBAv) enriched in neutralizing antibodies and depleted of serum proteins. Proteomic analysis showed that iBAv was 87% depleted in albumin and 37-83% lower in other serum proteins compared to BAv. Functional evaluation demonstrated that iBAv had a 2.9-fold higher affinity for venom toxins by surface plasmon resonance and a 2.8-fold lower ED50 <i>in vivo</i>, indicating enhanced potency. Our findings indicate that enriching specific antibodies while depleting serum proteins reduces the total protein dose required and increases the potency of antivenom. Although technical and economic considerations remain for large-scale implementation, this affinity-enriched antivenom represents a significant advancement in improving antivenom efficacy against <i>B. jararaca</i> envenomations.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MODE: A Web Application for Interactive Visualization and Exploration of Omics Data. MODE:用于组学数据交互可视化和探索的Web应用程序。
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-21 DOI: 10.1021/acs.jproteome.4c00650
David J Degnan, Daniel M Claborne, Rachel E Richardson, Clayton W Strauch, Evan C Glasscock, Dusan Veličković, Kristin E Burnum-Johnson, Bobbie-Jo M Webb-Robertson, Kelly G Stratton, Lisa M Bramer
{"title":"MODE: A Web Application for Interactive Visualization and Exploration of Omics Data.","authors":"David J Degnan, Daniel M Claborne, Rachel E Richardson, Clayton W Strauch, Evan C Glasscock, Dusan Veličković, Kristin E Burnum-Johnson, Bobbie-Jo M Webb-Robertson, Kelly G Stratton, Lisa M Bramer","doi":"10.1021/acs.jproteome.4c00650","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00650","url":null,"abstract":"<p><p>Studies generating transcriptomics, proteomics, lipidomics, and metabolomics (colloquially referred to as \"omics\") data allow researchers to find biomarkers or molecular targets or understand complex biological structures and functions by identifying changes in biomolecule abundance and expression between experimental conditions. Omics data are multidimensional, and oftentimes summarization techniques such as principal component analysis (PCA) are used to identify high-level patterns in data. Though useful, these summaries do not allow exploration of detailed patterns in omics data that may have biological relevance. The use of interactive HTML displays with plots allows researchers to interact with omics data at a detailed level, but building these displays requires significant coding expertise. To overcome this barrier, the software MODE was built to empower users to build their own interactive HTML displays to support scientific discovery. These displays are easily shareable, do not depend on a specific operating system, and allow users to sort and filter plots by categorical or numerical variables called metas. MODE allows users to build and share these displays with several options for plot design and meta selection. The MODE web application and its capabilities are presented and then demonstrated on lipidomics data from a leaf wounding study.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detoxome Capacity of the Adult Rumen Fluke Calicophoron daubneyi Extends into Its Secreted Extracellular Vesicles. 瘤胃成虫Calicophoron daubneyi的解毒能力扩展到其分泌的细胞外泡。
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-19 DOI: 10.1021/acs.jproteome.4c00615
Nathan Rhys Allen, Kathryn M Huson, Lukas Prchal, Mark W Robinson, Peter M Brophy, Russell M Morphew
{"title":"Detoxome Capacity of the Adult Rumen Fluke <i>Calicophoron daubneyi</i> Extends into Its Secreted Extracellular Vesicles.","authors":"Nathan Rhys Allen, Kathryn M Huson, Lukas Prchal, Mark W Robinson, Peter M Brophy, Russell M Morphew","doi":"10.1021/acs.jproteome.4c00615","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00615","url":null,"abstract":"<p><p>Helminth parasites have long adapted to survive hostile host environments and can likely adapt against the chemical anthelmintic challenge. One proposed adaptation route is via Phase I and II xenobiotic metabolizing enzymes (XMEs). For successful Helminth pharmacotherapy discovery programs, a working understanding of Helminth-derived chemical detoxification, the Helminth detoxome, is a must. At present, the detoxome of a newly emerging Helminth parasite, the rumen fluke <i>Calicophoron daubneyi</i>, remains unexplored. Thus, a combined bioinformatics, sub-, and global-proteomic approach has been employed to examine the detoxome of adult <i>C. daubneyi</i>. Transcriptome analysis revealed a complement of Phase I (cytochrome P450s and monoamine oxygenases) and Phase II (glutathione transferases [GSTs] and sulfotransferases) XMEs. Affinity-led subproteomic exploration of the GSTs revealed six GST isoforms in adult rumen fluke (CdGST-Mu1-2, S1, and S3-5), with global approaches identifying additional GSTs (CdGST-O1-2, Z1, and S2) and a unique egg-specific variant (CdGST-S6). Examination of <i>C. daubneyi</i> extracellular vesicles revealed a GST profile replicating that of the adult with the absence of two isoforms (CdGST-S2 and S4), with an additional identification of a sulfotransferase. These data represent the first exploration into the complete rumen fluke detoxification capacity and will provide direction for future anthelmintic discovery programs.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Mechanisms of Acanthamoeba castellanii Response to Different Sources of Oxidative Stress. 卡斯特棘阿米巴对不同来源氧化应激反应的分子机制
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-19 DOI: 10.1021/acs.jproteome.4c00573
Kateřina Ženíšková, Pavel Stopka, Tania Martín-Pérez, Guillaume Chevreux, Maria Grechnikova, Eliška Drncová, Ronald Malych, Jan Mach, Julia Walochnik, Jean-Michel Camadro, Robert Sutak
{"title":"Molecular Mechanisms of <i>Acanthamoeba castellanii</i> Response to Different Sources of Oxidative Stress.","authors":"Kateřina Ženíšková, Pavel Stopka, Tania Martín-Pérez, Guillaume Chevreux, Maria Grechnikova, Eliška Drncová, Ronald Malych, Jan Mach, Julia Walochnik, Jean-Michel Camadro, Robert Sutak","doi":"10.1021/acs.jproteome.4c00573","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00573","url":null,"abstract":"<p><p>Oxidative stress is a biological principle affecting all life on Earth and is also an important factor in the pathogen-host relationship. The pathogenic free-living amoeba <i>Acanthamoeba castellanii</i> has several pathways to cope with reactive oxygen species and the damage that they cause. In this study, we aimed to provide a comprehensive analysis of the amoeba's response to different sources of oxidative stress. Using whole-cell proteomic analysis, we obtained a complex picture of the changes in the proteome and identified potential key players in the defense against oxidative stress. Importantly, from the differential proteomics analysis, we identified a candidate efflux pump that may be involved in <i>Acanthamoeba</i> drug resistance.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IP-to-MS: An Unbiased Workflow for Antigen Profiling. IP-to-MS:抗原分析的无偏工作流程。
IF 3.8 2区 生物学
Journal of Proteome Research Pub Date : 2025-01-15 DOI: 10.1021/acs.jproteome.4c00837
Stephanie Biedka, Svitlana Yablonska, Xi Peng, Duah Alkam, Mara Hartoyo, Hannah VanEvery, Daniel J Kass, Stephanie D Byrum, Kunhong Xiao, Yingze Zhang, Robyn T Domsic, Robert Lafyatis, Dana P Ascherman, Jonathan S Minden
{"title":"IP-to-MS: An Unbiased Workflow for Antigen Profiling.","authors":"Stephanie Biedka, Svitlana Yablonska, Xi Peng, Duah Alkam, Mara Hartoyo, Hannah VanEvery, Daniel J Kass, Stephanie D Byrum, Kunhong Xiao, Yingze Zhang, Robyn T Domsic, Robert Lafyatis, Dana P Ascherman, Jonathan S Minden","doi":"10.1021/acs.jproteome.4c00837","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00837","url":null,"abstract":"<p><p>Immunoprecipitation is among the most widely utilized methods in biomedical research, with applications that include the identification of antibody targets and associated proteins. The path to identifying these targets is not straightforward, however, and often requires the use of chemical cross-linking and/or gel electrophoresis to separate targets from an overabundance of immunoglobulin protein. Such experiments are labor intensive and often yield long lists of candidate antibody targets. Here, we describe an unbiased immunoprecipitation-to-mass spectrometry (IP-to-MS) method that relies on a novel protein tag to separate low abundance immunoprecipitated proteins from overwhelmingly abundant immunoglobulins. We demonstrate that the IP-to-MS serotyping workflow is highly reproducible and can be used for the identification of novel, patient-specific antigen targets in multiple disease states. Furthermore, we show that IP-to-MS may outperform conventional methods of antibody detection, including enzyme-linked immunosorbent assay, while also enabling patient stratification beyond what is possible with traditional approaches.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信