{"title":"A genus-wide study on venom proteome variation and phospholipase A<sub>2</sub> inhibition in Asian lance-headed pit vipers (genus: Trimeresurus).","authors":"Mun Yee Yong, Kae Yi Tan, Choo Hock Tan","doi":"10.1016/j.cbpc.2024.110077","DOIUrl":"10.1016/j.cbpc.2024.110077","url":null,"abstract":"<p><p>High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A<sub>2</sub> (PLA<sub>2</sub>) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA<sub>2</sub>. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA<sub>2</sub> activities. Instead, the PLA<sub>2</sub> activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110077"},"PeriodicalIF":3.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental ResearchPub Date : 2025-01-15Epub Date: 2024-12-03DOI: 10.1016/j.envres.2024.120495
Eliane Farah, Marc Fadel, Gihane Mansour, Nansi Fakhri, Salwa K Hassan, Mohamed Boraiy, Mostafa El-Nazer, Ali Wheida, Magdy Abdelwahab, Konstantina Oikonomou, Stéphane Sauvage, Agnès Borbon, Jean Sciare, Dominique Courcot, Frédéric Ledoux, Charbel Afif
{"title":"Corrigendum to 'Unveiling the organic chemical composition and sources of organic carbon in PM2.5 at an urban site in Greater Cairo (Egypt): A comprehensive analysis of primary and secondary compounds' [Environ. Res. 263-P3 (2024) 120118].","authors":"Eliane Farah, Marc Fadel, Gihane Mansour, Nansi Fakhri, Salwa K Hassan, Mohamed Boraiy, Mostafa El-Nazer, Ali Wheida, Magdy Abdelwahab, Konstantina Oikonomou, Stéphane Sauvage, Agnès Borbon, Jean Sciare, Dominique Courcot, Frédéric Ledoux, Charbel Afif","doi":"10.1016/j.envres.2024.120495","DOIUrl":"10.1016/j.envres.2024.120495","url":null,"abstract":"","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120495"},"PeriodicalIF":7.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental ResearchPub Date : 2025-01-15Epub Date: 2024-12-02DOI: 10.1016/j.envres.2024.120418
Armaya'u Usman, Kuan Shiong Khoo, Marinah Mohd Ariffin, Saw Hong Loh, Wan Mohd Afiq Wan Mohd Khalik, Hanis Mohd Yusoff, Zakariyya Uba Zango, Osamah Aldaghri, Khalid Hassan Ibnaouf, M H Eisa, Ayed M Binzowaimil, Jun Wei Lim
{"title":"Retraction notice to \"Adsorption of terbutaline β-agonists from wastewater by mechano-synthesized iron oxide nanoparticles modified copper (II) isonicotinate metal-organic framework\" [Environ. Res. 258 (2024) 119413].","authors":"Armaya'u Usman, Kuan Shiong Khoo, Marinah Mohd Ariffin, Saw Hong Loh, Wan Mohd Afiq Wan Mohd Khalik, Hanis Mohd Yusoff, Zakariyya Uba Zango, Osamah Aldaghri, Khalid Hassan Ibnaouf, M H Eisa, Ayed M Binzowaimil, Jun Wei Lim","doi":"10.1016/j.envres.2024.120418","DOIUrl":"10.1016/j.envres.2024.120418","url":null,"abstract":"","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120418"},"PeriodicalIF":7.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Waste managementPub Date : 2025-01-15Epub Date: 2024-12-01DOI: 10.1016/j.wasman.2024.11.025
Yali Hou, Qunwei Wang, Tao Tan
{"title":"Evaluating drivers of PM<sub>2.5</sub> air pollution at urban scales using interpretable machine learning.","authors":"Yali Hou, Qunwei Wang, Tao Tan","doi":"10.1016/j.wasman.2024.11.025","DOIUrl":"10.1016/j.wasman.2024.11.025","url":null,"abstract":"<p><p>Reducing urban fine particulate matter (PM<sub>2.5</sub>) concentrations is essential for China to achieve the Sustainable Development Goals (SDGs). Identifying the key drivers of PM<sub>2.5</sub> will enable the development of targeted strategies to reduce PM<sub>2.5</sub> levels. This study introduces a machine-learning model that combines CatBoost and the Tree-Structured Parzen Estimator (TPE) to analyze PM<sub>2.5</sub> concentration across 297 cities between 2000 and 2021. SHapley Additive exPlanations (SHAP) were employed to identify the primary factors influencing urban PM<sub>2.5</sub> concentrations. The study revealed that the proposed model has high accuracy in predicting urban PM<sub>2.5</sub> concentrations, achieving a coefficient of determination (R<sup>2</sup>) score of 96.44%. Socioeconomic and industrial activity are key drivers of PM<sub>2.5</sub> concentrations. This study not only quantifies the primary factors exacerbating or alleviating pollution for each city or province during the 2000-2021 period but also evaluates the influence of operational factors such as technological and public financial expenditures. In 2000, the main contributors to pollution in four heavily polluted cities included substantial nitrogen oxide emissions, inadequate technology investments, and excessive population density and liquefied gas consumption. Due to the rapid reduction in nitrogen oxide emissions, pollution levels in these cities have improved substantially. In the future, the most effective strategies for pollution reduction in these cities will focus on controlling population density and slowing down mining development. The proposed framework serves as a robust evaluation tool and can propose tailored strategies to control PM<sub>2.5</sub> concentrations effectively in each city.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"192 ","pages":"114-124"},"PeriodicalIF":7.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental ResearchPub Date : 2025-01-15Epub Date: 2024-12-02DOI: 10.1016/j.envres.2024.120492
Jeong Weon Choi, Jiwon Oh, Deborah H Bennett, Kurunthachalam Kannan, Daniel J Tancredi, Meghan Miller, Rebecca J Schmidt, Hyeong-Moo Shin
{"title":"Corrigendum to 'Gestational exposure to organophosphate esters and autism spectrum disorder and other non-typical development in a cohort with elevated familial likelihood' [Environ. Res. 263 (2024) 120141].","authors":"Jeong Weon Choi, Jiwon Oh, Deborah H Bennett, Kurunthachalam Kannan, Daniel J Tancredi, Meghan Miller, Rebecca J Schmidt, Hyeong-Moo Shin","doi":"10.1016/j.envres.2024.120492","DOIUrl":"10.1016/j.envres.2024.120492","url":null,"abstract":"","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120492"},"PeriodicalIF":7.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edgar Castro, James Healy, Abbie Liu, Yaguang Wei, Anna Kosheleva, Joel Schwartz
{"title":"Interactive effects between extreme temperatures and PM<sub>2.5</sub> on cause-specific mortality in thirteen U.S. states.","authors":"Edgar Castro, James Healy, Abbie Liu, Yaguang Wei, Anna Kosheleva, Joel Schwartz","doi":"10.1088/1748-9326/ad97d1","DOIUrl":"10.1088/1748-9326/ad97d1","url":null,"abstract":"<p><p>The extent and robustness of the interaction between exposures to heat and ambient PM<sub>2.5</sub> is unclear and little is known of the interaction between exposures to cold and ambient PM<sub>2.5</sub>. Clarifying these interactions, if any, is crucial due to the omnipresence of PM<sub>2.5</sub> in the atmosphere and increasing scope and frequency of extreme temperature events. To investigate both of these interactions, we merged 6 073 575 individual-level mortality records from thirteen states spanning seventeen years with 1 km daily PM<sub>2.5</sub> predictions from sophisticated prediction model and 1 km meteorology from Daymet V4. A time-stratified, bidirectional case-crossover design was used to control for confounding by individual-level, long-term and cyclic weekly characteristics. We fitted conditional logistic regressions with an interaction term between PM<sub>2.5</sub> and extreme temperature events to investigate the potential interactive effects on mortality. Ambient PM<sub>2.5</sub> exposure has the greatest effect on mortality by all internal causes in the 2 d moving average exposure window. Additionally, we found consistently synergistic interactions between a 10 <i>μ</i>g m<sup>-3</sup> increase in the 2 d moving average of PM<sub>2.5</sub> and extreme heat with interaction odds ratios of 1.013 (95% CI: 1.000, 1.026), 1.024 (95% CI: 1.002, 1.046), and 1.033 (95% CI: 0.991, 1.077) for deaths by all internal causes, circulatory causes, and respiratory causes, respectively, which represent 75%, 156%, and 214% increases in the coefficient estimates for PM<sub>2.5</sub> on those days. We also found evidence of interactions on the additive scale with corresponding relative excess risks due to interaction (RERIs) of 0.013 (95% CI: 0.003, 0.021), 0.020 (95% CI: 0.008, 0.031), and 0.017 (95% CI: -0.015, 0.036). Interactions with other PM<sub>2.5</sub> exposure windows were more pronounced. For extreme cold, our results were suggestive of an antagonistic relationship. These results suggest that ambient PM<sub>2.5</sub> interacts synergistically with exposure to extreme heat, yielding greater risks for mortality than only either exposure alone.</p>","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"20 1","pages":"014011"},"PeriodicalIF":5.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine pollution bulletinPub Date : 2025-01-01Epub Date: 2024-12-02DOI: 10.1016/j.marpolbul.2024.117343
Hugo F Olivares-Rubio, Guadalupe Ponce-Vélez
{"title":"Polycyclic aromatic hydrocarbons during the 21st Century in Southern Gulf of Mexico, a prominent petroleum area: A review.","authors":"Hugo F Olivares-Rubio, Guadalupe Ponce-Vélez","doi":"10.1016/j.marpolbul.2024.117343","DOIUrl":"10.1016/j.marpolbul.2024.117343","url":null,"abstract":"<p><p>Petroleum industry in the southern Gulf of Mexico possesses relevant importance for the Mexican economy but it has also impacted the marine and coastal environments of this region. The objective of the current review is to provide a substantial panorama of the polycyclic aromatic hydrocarbons (PAHs) during the XXI century. The highest PAHs concentration in water was found in the Dos Bocas Maritime Terminal and the Mecoacán Lagoon; sediments and cores were found in Sontecomapan, Mandinga, and La Mancha Lagoons; maximum PAHs levels in biota were found in fish in Términos Lagoon. PAHs in water and oysters were comparable to others around the world; sediments concentrations were higher than in other regions. Mecoacán Lagoon, coastal shelf Tamaulipas, and Cayo Arcas Reef Complex showed a higher risk estimation based on sediment concentrations. It is necessary to establish monitoring programs in the study region due to the trends found in PAHs.</p>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"210 ","pages":"117343"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine pollution bulletinPub Date : 2025-01-01Epub Date: 2024-11-27DOI: 10.1016/j.marpolbul.2024.117320
Xiaochen Hao, Cheng He, Ziru Lian
{"title":"Fluorescence turn-on recognition of trace acetamiprid in seawater using selective molecularly imprinted polymer-based nanoprobe.","authors":"Xiaochen Hao, Cheng He, Ziru Lian","doi":"10.1016/j.marpolbul.2024.117320","DOIUrl":"10.1016/j.marpolbul.2024.117320","url":null,"abstract":"<p><p>A novel imprinted composite nanoprobe for fluorescence turn-on recognition of acetamiprid was fabricated and applied to rapidly and sensitively detect trace-level acetamiprid in seawater. The fluorescent probe was prepared using modified fluorescein isothiocyanate as a response unit to improve the sensitivity of signal transmission. The quantitative analysis of acetamiprid was obtained by measuring fluorescence enhancement efficiency of the probe. Under optimal conditions, a good linear relationship with a determination coefficient of 0.9988 was demonstrated in the range of 0-45 μg L<sup>-1</sup> and the limit of detection was 1.5 μg L<sup>-1</sup>. The developed fluorescence-enhancing nanoprobe was utilized in determination of acetamiprid in seawater samples and achieved recoveries from 96.00 % to 104.00 % with the relative standard deviations <5.88 % (n = 3). This study offered a promising strategy for simple, reliable and sensitive detection of acetamiprid by embedding fluorescent dye in molecularly imprinted material as highly selective probes.</p>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"210 ","pages":"117320"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of tree growth form on temporal and spatial patterns of particulate matter with various particle sizes in urban street canyons.","authors":"Xiaoshuang Wang, Yang Xiang, Chucai Peng, Mingjun Teng, Bojun Ma, Zhixiang Zhou, Changhui Peng","doi":"10.1007/s10980-024-02023-7","DOIUrl":"https://doi.org/10.1007/s10980-024-02023-7","url":null,"abstract":"<p><strong>Context: </strong>Trees play a vital role in reducing street-level particulate matter (PM) pollution in metropolitan areas. However, the optimal tree growth type for maximizing the retention of various sizes of PM remains uncertain.</p><p><strong>Objectives: </strong>This study assessed the PM reduction capabilities of evergreen and deciduous broadleaf street trees, focusing on how leaf phenology influences the dispersion of pollutants across particle sizes.</p><p><strong>Methods: </strong>We collected data on six PM size fractions from 72 sites along streets lined with either evergreen or deciduous broadleaf trees in Wuhan, China, during the summer and winter of 2017-2018.</p><p><strong>Results: </strong>Evergreen trees demonstrated superior PM reduction capabilities compared to deciduous trees, with evergreen street canyons showing 27.2% and 12.6% lower PM<sub>2.5</sub> and PM<sub>10</sub> concentrations in summer, and 13% and 5.5% lower concentrations in winter. During summer, evergreen streets predominantly contained fine particles (PM<sub>1</sub>, PM<sub>2.5</sub>), posing potential health risk due to their ability to infiltrate the human respiratory system. In contrast, deciduous streets primarily harbored coarser particles (PM<sub>4</sub>, PM<sub>7</sub>, PM<sub>10</sub>, and total suspended particulate [TSP]). During winter, larger particles were dominant, regardless of the tree growth form.</p><p><strong>Conclusions: </strong>Evergreen trees showed superior PM reduction capabilities compared to deciduous trees due to their year-round leaf retention, enhanced surface properties, and denser canopies that maximize PM capture. We recommend prioritizing evergreen broadleaf trees as the primary street trees while interspersing deciduous trees at appropriate intervals. This approach will ensure that urban greenery provides maximum ecological benefits while reducing the PM concentration.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"40 1","pages":"5"},"PeriodicalIF":4.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}