ChemoecologyPub Date : 2024-08-24DOI: 10.1007/s00049-024-00411-8
Isabel Lopez-Cacacho, Ivone de Bem Oliveira, Amanda Markee, Nicolas J. Dowdy, Akito Y. Kawahara
{"title":"Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps","authors":"Isabel Lopez-Cacacho, Ivone de Bem Oliveira, Amanda Markee, Nicolas J. Dowdy, Akito Y. Kawahara","doi":"10.1007/s00049-024-00411-8","DOIUrl":"10.1007/s00049-024-00411-8","url":null,"abstract":"<div><p>Insects and plants have been part of an evolutionary arms race that has led plants to produce toxins as defense and insects to sequester these chemical compounds. Pyrrolizidine alkaloids (PAs) are secondary plant chemical metabolites, and some herbivorous insects have evolved biochemical mechanisms to tolerate, sequester, and use PAs against predators and parasitoids. Several tiger moth species (Erebidae: Arctiinae) have gone one step further by transferring PAs acquired during mating to their eggs or using them as precursors of sexual pheromones, thereby making PAs an essential element in sexual selection. Although tiger moths are well known to use PAs for defense, a comprehensive qualitative and quantitative systematic review of PA research on tiger moths has yet to be conducted. To identify areas of past research focus and future research potential, we analyzed 108 studies retrieved from an exhaustive search on the Web of Science. Through a scientometric analysis, we synthesized available literature, examining authors, journals, countries and keywords with the aim of providing researchers tools to navigate the current literature more effectively. Using a systematic review approach, we evaluated the frequency of moth species studied and host plant diet, along with their research topic, allowing us to identify major knowledge gaps. We show that the number of publications decreased after 2015, and most research has focused on a few moth species and research topics. Our results provide valuable insights that can help direct research efforts to further the development of knowledge about PAs in Arctiinae.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 4","pages":"163 - 173"},"PeriodicalIF":1.6,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-07-29DOI: 10.1007/s00049-024-00410-9
Basu Dev Kafle, Anthony O. Adesemoye, Henry Y. Fadamiro
{"title":"Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids","authors":"Basu Dev Kafle, Anthony O. Adesemoye, Henry Y. Fadamiro","doi":"10.1007/s00049-024-00410-9","DOIUrl":"10.1007/s00049-024-00410-9","url":null,"abstract":"<div><p>The chemical composition of cuticular hydrocarbons differs qualitatively and quantitatively among insect species. These differences convey species-specific information about host suitability to foraging parasitoids, enabling them to discriminate between the host and non-host species. Specialist parasitoids that parasitize fewer host species are predicted to use host-specific cues compared to generalists that have evolved to use common cues present in multiple potential host species. Here, we tested the above hypothesis by evaluating two parasitoids with varying levels of host specificity, <i>Microplitis croceipe</i>s (specialist) and <i>Cotesia marginive</i>ntris (generalist), for their responses to cuticular extracts of three caterpillar species, <i>Chloridea virescens</i>, <i>Helicoverpa zea</i>, and <i>Spodoptera exigua</i>. First, we compared the cuticular profiles of the three caterpillar species and found that <i>C. virescens</i> and <i>H. zea</i> were qualitatively similar in cuticular composition, whereas <i>S. exigua</i> differed qualitatively and quantitatively from the other two. In contact bioassays, both parasitoid species were behaviorally arrested by the host cuticular extracts, with specialist <i>M. croceipes</i> able to discriminate between the cuticular extracts of its host and non-host caterpillar species. Assessment with the coupled gas chromatography-electroantennogram detection (GC-EAD) revealed qualitative and quantitative differences in parasitoids’ antennal responses to the components of cuticular extracts of host species, with <i>M. croceipes</i> showing greater antennal response than generalist <i>C. marginiventris</i>. The data implicated 13-methylhentriacontane as a probable host-specific kairomone used by specialist <i>M. croceipes</i>. These results suggest that specialist parasitoids like <i>M. croceipes</i> may exploit the differences in the composition of cuticular chemicals of caterpillars as cues for host recognition and discrimination.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 4","pages":"149 - 161"},"PeriodicalIF":1.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-07-18DOI: 10.1007/s00049-024-00409-2
Natalia M. De Souza, R. Andrew Hayes, Peter R. Brooks, Helen F. Nahrung
{"title":"How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore","authors":"Natalia M. De Souza, R. Andrew Hayes, Peter R. Brooks, Helen F. Nahrung","doi":"10.1007/s00049-024-00409-2","DOIUrl":"10.1007/s00049-024-00409-2","url":null,"abstract":"<div><p>Herbivorous insects require mechanisms to deal with defence compounds produced by their host plants. Despite an array of secondary compounds associated with defence, eucalypts are hosts to many insect species that readily obtain nutrients also produced by these plants. <i>Gonipterus</i> weevils are foliage-feeding eucalypt specialists as larvae and adults, with a notable characteristic of protecting their eggs with a hardened frass-like substance. The aim of this study was to assess plant, weevil frass and egg capsule chemistry to determine how the weevil eliminates plant secondary metabolites. We hypothesised that noxious compounds would be metabolised prior to elimination and that egg capsules would be composed of frass and additional substances. Weevils were fed on <i>Eucalyptus globulus</i> plants for seven days, with their frass and egg capsules collected daily, and the damaged, first, fully-expanded leaves of the host collected at the end of the assay. Compounds present in each sample were extracted in hexane and analysed by gas chromatography-mass spectrometry. The most abundant compounds in each sample were waxes and terpenoids, and metabolism of 1,8-cineole was evident, with two metabolites that may have semiochemical activity. Comparative analysis revealed significant differences between all samples, with shared compounds varying in relative proportions and exclusive compounds in sample type. These findings contribute to the understanding of <i>Gonipterus</i> physiology and highlight the differences between frass and the cover of egg capsules.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 4","pages":"137 - 147"},"PeriodicalIF":1.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00409-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges","authors":"Isabel Salado, Paloma Alvarez‑Blanco, Raphaël Boulay, Olivier Blight, Sílvia Abril, Xim Cerdá, Elena Angulo","doi":"10.1007/s00049-024-00408-3","DOIUrl":"10.1007/s00049-024-00408-3","url":null,"abstract":"","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 4","pages":"175 - 175"},"PeriodicalIF":1.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00408-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-07-06DOI: 10.1007/s00049-024-00407-4
Rafaella Caroline Bernardi, Angélica Mendonça, Ellen Liciane Barbosa Firmino, Luis Fernando Benitez Macorini, Edvaldo Barros, Pollyanna Pereira Santos, Luiz Carlos Santos-Junior, José Eduardo Serrão, William Fernando Antonialli-Junior, Claudia Andréa Lima Cardoso
{"title":"Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)","authors":"Rafaella Caroline Bernardi, Angélica Mendonça, Ellen Liciane Barbosa Firmino, Luis Fernando Benitez Macorini, Edvaldo Barros, Pollyanna Pereira Santos, Luiz Carlos Santos-Junior, José Eduardo Serrão, William Fernando Antonialli-Junior, Claudia Andréa Lima Cardoso","doi":"10.1007/s00049-024-00407-4","DOIUrl":"10.1007/s00049-024-00407-4","url":null,"abstract":"<div><p>Ant venom has several functions, including predation, communication, defense against predators, and action against pathogens. There is a scarcity of data about ant venom components that could provide support for understanding the mechanisms of action. The objective here was to identify the amino acids and proteins in the venom of the predatory ant <i>Ectatomma brunneum</i> and to evaluate its antimicrobial activity. The amino acids were analyzed by liquid chromatography, with diode array detection, and were identified using amino acid standards. The two-dimensional (2D) gel electrophoresis fractionation approach was used to identify the proteins, together with MALDI-TOF/TOF mass spectrometry and protein databases. The antimicrobial activity of the venom was evaluated using the minimum inhibitory and minimum microbiocidal concentrations. The venom of <i>E. brunneum</i> contained free amino acids, with a high amount of alanine. The 2D gel analysis showed 104 spots, of which 21 were identified and classified according to biological function, as follows: venom proteins, nontoxic reservoir protection, cellular maintenance proteins, and proteins with unknown function. The venom showed antimicrobial activity, inhibiting the growth of all the bacteria and fungi tested. The results provide new insights into ant venom components and antimicrobial activity.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"125 - 136"},"PeriodicalIF":1.6,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-07-02DOI: 10.1007/s00049-024-00404-7
Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer
{"title":"Tigliane metabolites in Hyles frass after feeding experiments with TPA and Euphorbia cyparissias","authors":"Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer","doi":"10.1007/s00049-024-00404-7","DOIUrl":"10.1007/s00049-024-00404-7","url":null,"abstract":"<div><p>Within the genus <i>Hyles, Euphorbia</i> feeding appears to have evolved twice independently, in <i>H. euphorbiae</i> but also in <i>H. nicaea</i>, a species which had not been studied for its detoxification processes before. <i>Euphorbia</i> is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in <i>Euphorbia cyparissias</i> by the two species <i>Hyles euphorbiae</i> and <i>Hyles nicaea</i> (subspecies <i>nicaea</i>). For the first time, we report (1) The gut disposition of <i>Hyles n. nicaea</i> for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of <i>Euphorbia cyparissias</i> after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of <i>E. cyparissias</i> feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in <i>Hyles n. nicaea</i> frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"95 - 104"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00404-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-06-29DOI: 10.1007/s00049-024-00406-5
José Carrillo-Hidalgo, Enrique González-Dávila
{"title":"Predator odour recognition in Eurasian kestrels","authors":"José Carrillo-Hidalgo, Enrique González-Dávila","doi":"10.1007/s00049-024-00406-5","DOIUrl":"10.1007/s00049-024-00406-5","url":null,"abstract":"<div><p>Semiochemicals released by predators (i.e. “kairomones”) may be useful for prey species. Knowledge on functional use of olfaction to detect kairomones and the consequent antipredator behaviour remains scant in birds, especially in raptors. The study population of Eurasian kestrels <i>Falco tinnunculus canariensis</i> inhabits the island of Tenerife, and man is one of its main predators, destroying clutches and stealing nestlings. Man and kestrels have evolved in sympatry or, at least, have been sharing the habitat for a long time. Parent kestrels were exposed to chemical cues: human fresh urine (predator), cologne (odorous control), or water (odourless control) in the nest when provisioning for nestlings. They did not display clear signs of aggressive antipredator behaviour when in contact with kairomones released by a non-present human predator. With human urine, they visited less, arrived earlier the first time in the trial, but their refusal percentage dropped significantly, and they spent more time inside the nest than those containing cologne or water. Females, especially, visited those nests highest above the ground less times regardless of substance. Interactions among some environmental (e.g. nest height, variations in human urine odour) and behavioural factors (e.g. neophobic response) could influence kestrel behaviour regarding kairomones. Kestrels would exhibit commensurate responses according to the magnitude of predation risk faced. We suggest kestrels do not ultimately react through behavioural defence mechanisms based on chemical cues from human predators, although it remains unclear if they respond to these chemical cues in other ways.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"115 - 123"},"PeriodicalIF":1.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141524491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-06-29DOI: 10.1007/s00049-024-00405-6
Jessica L. Griesheimer, Xavier Martini, Carey Minteer, Stephen Hight, Alexander M. Gaffke
{"title":"Beetle herding: Optimizing the biological control of the invasive air potato vine using attractive semiochemical lures","authors":"Jessica L. Griesheimer, Xavier Martini, Carey Minteer, Stephen Hight, Alexander M. Gaffke","doi":"10.1007/s00049-024-00405-6","DOIUrl":"10.1007/s00049-024-00405-6","url":null,"abstract":"<div><p>Purposeful manipulation of biological control programs, such as timed releases of biological control agents, can be ephemeral and difficult to expand into new areas impacted by the targeted invasive plant. Integration of chemical ecology through attractive semiochemical lures to aggregate biological control agents to un-colonized areas can help mitigate this challenge. The invasive air potato vine, <i>Dioscorea bulbifera</i> L., is native to Asia and Africa with invasive infestations in the southeastern United States, Hawai’i, and Puerto Rico. In 2011, a host specific biological control agent, <i>Lilioceris cheni</i> (Coleoptera: Chrysomelidae), was introduced to manage <i>D. bulbifera</i>. Synthetic and racemic blends of previously identified attractive herbivory induced plant volatiles (HIPVs), ocimene and farnesene, were first evaluated for antennal response through electroantennography, then deployed as potential attractive lures in field conditions. Electroantennogram results validated the ability of adult male and female <i>L. cheni</i> to detect the two compounds. When used in field conditions, adult <i>L. cheni</i> beetles showed increased response to plants with ocimene and farnesene lures compared to control plants. The chemically enhanced lures increased <i>L. cheni</i> adult densities on <i>D. bulbifera</i> plants in the field compared to control plants. Plants with higher densities of <i>L. cheni</i> had greater direct herbivore feeding damage and observed cupped leaves, indicating the presence of oviposition and future larval development. The information gathered in this study indicated that the use of attractant semiochemical lures to purposefully aggregate and direct movement of biological control agents can improve the efficacy of invasive plant biocontrol programs.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 3","pages":"105 - 114"},"PeriodicalIF":1.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-06-07DOI: 10.1007/s00049-024-00403-8
Mari Nakano, Kye Chung Park, Steven A. Trewick, Mary Morgan-Richards
{"title":"Food plant odor perception in three sympatric alpine grasshopper species (Orthoptera: Acrididae: Catantopinae) in Aotearoa New Zealand","authors":"Mari Nakano, Kye Chung Park, Steven A. Trewick, Mary Morgan-Richards","doi":"10.1007/s00049-024-00403-8","DOIUrl":"10.1007/s00049-024-00403-8","url":null,"abstract":"<div><p>The alpine grasshoppers <i>Sigaus nivalis</i>, <i>Sigaus australis</i> and <i>Sigaus nitidus</i> are sympatric in the central mountains of South Island, Aotearoa New Zealand. These grasshoppers feed on a range of alpine plants but show preference towards dicots over monocots. Because herbivorous insects often use smell and taste to locate and recognize food plants it was expected that these grasshoppers would show sensitivity to their favorite foods and potential sensitivity to nonhost plants. Here, we determined feeding preference in captivity allowing each of these three sympatric grasshoppers the same choice of six native alpine plant species. We analyzed the chemical compositions of the plants used in these experiments using gas-chromatograph coupled with mass-spectrometry (GC-MS) and then recorded olfactory responses in the grasshoppers to plant-derived smells (with synthetic compounds) using electroantennogram (EAG). The grasshoppers were able to distinguish between the potential food plants and ate the shrub <i>Coriaria sarmentosa</i> but not the grass <i>Chionochloa pallens</i>, however, the chemicals we detected in the six plant species were very similar. High sensitivity to fatty acid derived aldehydes (decanal, (<i>E,Z</i>)-2,6-nonadienal, hexanal) and a 6-carbon alcohol ((<i>Z</i>)-2-hexen-1-ol) compared to terpenoids (α-phellandrene, β-myrcene, β-ocimene, eucalyptol, (<i>S</i>)-(-)-limonene, (1<i>S</i>)-(-)-α-pinene) or an aromatic compound (2-phenylethanol) was recorded in the antennae of all three grasshopper species and no species- or sex-specific sensitivity to particular compounds was observed. As aldehydes and alcohols are emitted upon plant damage, it is possible that these generalist grasshoppers are sensitive to the smells of damaged plants rather than species-specific plant smells.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 2","pages":"71 - 81"},"PeriodicalIF":1.6,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00403-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemoecologyPub Date : 2024-05-19DOI: 10.1007/s00049-024-00402-9
Julia Albuquerque-Pinna, Adriana M. Jeckel, Daniel Y. M. Nakamura, Paulo Sérgio Bernarde, Sophie Kocheff, Ralph A. Saporito, Taran Grant
{"title":"Defensive alkaloid variation and palatability in sympatric poison frogs","authors":"Julia Albuquerque-Pinna, Adriana M. Jeckel, Daniel Y. M. Nakamura, Paulo Sérgio Bernarde, Sophie Kocheff, Ralph A. Saporito, Taran Grant","doi":"10.1007/s00049-024-00402-9","DOIUrl":"10.1007/s00049-024-00402-9","url":null,"abstract":"<div><p>Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (<i>Adelphobates, Ameerega</i>, and <i>Ranitomeya</i>) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 2","pages":"83 - 94"},"PeriodicalIF":1.6,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}