Nanoscale Horizons最新文献

筛选
英文 中文
Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment.
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-24 DOI: 10.1039/d4nh00542b
Ruizhong He, Yulong Gu, Jiye Jia, Feng Yang, Ping Wu, Pei Feng, Cijun Shuai
{"title":"Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment.","authors":"Ruizhong He, Yulong Gu, Jiye Jia, Feng Yang, Ping Wu, Pei Feng, Cijun Shuai","doi":"10.1039/d4nh00542b","DOIUrl":"https://doi.org/10.1039/d4nh00542b","url":null,"abstract":"<p><p>Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, <i>etc.</i> In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced. Type II heterojunctions, P-N heterojunctions, type Z heterojunctions and Schottky junctions have been reported to reduce the recombination of carriers, while element doping, sensitization and up-conversion luminescence expand the photoresponse range. Furthermore, the applications of semiconductor photocatalytic antibacterial materials in bone infection treatment such as osteomyelitis treatment, bone defect repair and dental tissue regeneration are summarized. Finally, the conclusion and future prospects of semiconductor photocatalytic antibacterial materials in bone tissue engineering were analyzed.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forming and compliance-free operation of low-energy, fast-switching HfOxSy/HfS2 memristors.
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-23 DOI: 10.1039/d4nh00508b
Aferdita Xhameni, AbdulAziz AlMutairi, Xuyun Guo, Irina Chircă, Tianyi Wen, Stephan Hofmann, Valeria Nicolosi, Antonio Lombardo
{"title":"Forming and compliance-free operation of low-energy, fast-switching HfO<sub><i>x</i></sub>S<sub><i>y</i></sub>/HfS<sub>2</sub> memristors.","authors":"Aferdita Xhameni, AbdulAziz AlMutairi, Xuyun Guo, Irina Chircă, Tianyi Wen, Stephan Hofmann, Valeria Nicolosi, Antonio Lombardo","doi":"10.1039/d4nh00508b","DOIUrl":"https://doi.org/10.1039/d4nh00508b","url":null,"abstract":"<p><p>We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS<sub>2</sub>). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS<sub>2</sub> under dry conditions, carefully controlling process parameters. The resulting HfO<sub><i>x</i></sub>S<sub><i>y</i></sub>/HfS<sub>2</sub> heterostructures are integrated between metal contacts, forming vertical crossbar devices. Forming-free, compliance-free resistive switching between non-volatile states is demonstrated by applying voltage pulses and measuring the current response in time. We show non-volatile memory operation with an <i>R</i><sub>ON</sub>/<i>R</i><sub>OFF</sub> of 102, programmable by 80 ns WRITE and ERASE operations. Multiple stable resistance states are achieved by modulating pulse width and amplitude, down to 60 ns, < 20 pJ operation. This demonstrates the capability of these devices for low-energy, fast-switching and multi-state programming. Resistance states were retained without fail at 150 °C over 10<sup>4</sup> s, showcasing the potential of these devices for long retention times and resilience to ageing. Low-energy resistive switching measurements were repeated under vacuum (8.6 mbar) showing unchanged characteristics and no dependence of the device on surrounding oxygen or water vapour. Using a technology computer-aided design (TCAD) tool, we explore the role of the semiconductor layer in tuning the device conductance and driving gradual resistive switching in 2D HfO<sub><i>x</i></sub>-based devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the role of oxidation in two-dimensional silicon nanosheets. 阐明氧化在二维硅纳米片中的作用。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-22 DOI: 10.1039/d4nh00387j
Jeremy B Essner, Abhijit Bera, Maharram Jabrayilov, Abhishek Chaudhari, Benjamin T Diroll, Julia V Zaikina, Matthew G Panthani
{"title":"Elucidating the role of oxidation in two-dimensional silicon nanosheets.","authors":"Jeremy B Essner, Abhijit Bera, Maharram Jabrayilov, Abhishek Chaudhari, Benjamin T Diroll, Julia V Zaikina, Matthew G Panthani","doi":"10.1039/d4nh00387j","DOIUrl":"https://doi.org/10.1039/d4nh00387j","url":null,"abstract":"<p><p>We report a synthetic protocol that yields hydrogen-terminated 2D silicon nanosheets with greatly reduced siloxane (<i>e.g.</i>, Si-O-Si, O<sub><i>x</i></sub>Si) content. These nanosheets displayed weak, broad photoluminescence centered near 610 nm with a low absolute photoluminescence quantum yield (as low as 0.2%). By intentionally oxidizing the nanosheets, the photoluminescence peak emission wavelength blueshifted to 510 nm, and the quantum yield increased by more than an order of magnitude to 8.5%. These results demonstrate that oxidation of 2D silicon nanosheets modulates the material's bandgap and suggests that previously reported photoluminescence properties for this material resulted, in part, from oxidation.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Single glucose molecule transport process revealed by force tracing and molecular dynamics simulations. 更正:单葡萄糖分子的运输过程揭示了力追踪和分子动力学模拟。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-22 DOI: 10.1039/d5nh90006a
Yangang Pan, Yuebin Zhang, Pianchou Gongpan, Qingrong Zhang, Siteng Huang, Bin Wang, Bingqian Xu, Yuping Shan, Wenyong Xiong, Guohui Li, Hongda Wang
{"title":"Correction: Single glucose molecule transport process revealed by force tracing and molecular dynamics simulations.","authors":"Yangang Pan, Yuebin Zhang, Pianchou Gongpan, Qingrong Zhang, Siteng Huang, Bin Wang, Bingqian Xu, Yuping Shan, Wenyong Xiong, Guohui Li, Hongda Wang","doi":"10.1039/d5nh90006a","DOIUrl":"https://doi.org/10.1039/d5nh90006a","url":null,"abstract":"<p><p>Correction for 'Single glucose molecule transport process revealed by force tracing and molecular dynamics simulations' by Yangang Pan <i>et al.</i>, <i>Nanoscale Horiz.</i>, 2018, <b>3</b>, 517-524, https://doi.org/10.1039/C8NH00056E.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocomposites of 2D layered materials. 二维层状材料的生物复合材料。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-16 DOI: 10.1039/d4nh00530a
Mert Vural, Melik C Demirel
{"title":"Biocomposites of 2D layered materials.","authors":"Mert Vural, Melik C Demirel","doi":"10.1039/d4nh00530a","DOIUrl":"https://doi.org/10.1039/d4nh00530a","url":null,"abstract":"<p><p>Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties. These biocomposites are great for modulating electron, photon, and phonon transport in nanoelectronics and photonic devices but are challenging to translate into bulk materials. Combining 2D crystals with biomolecules enables various 2D nanocomposites with novel characteristics. This review has provided an overview of the latest biocomposites, including their structure, composition, and characterization. Layered biocomposites have the potential to improve the performance of many devices. For example, biocomposites use macromolecules to control the organization of 2D crystals, allowing for new capabilities such as flexible electronics and energy storage. Other applications of 2D biocomposites include biomedical imaging, tissue engineering, chemical and biological sensing, gas and liquid filtration, and soft robotics. However, some fundamental questions need to be answered, such as self-assembly and kinetically limited states of organic-inorganic phases in soft matter physics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN4/metal interfaces. 偶极子诱导Janus MoSiGeN4/金属界面从肖特基接触到欧姆接触的转变。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-15 DOI: 10.1039/d4nh00493k
Wen Ai, Xiaohui Hu, Tao Xu, Jian Yang, Litao Sun
{"title":"Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN<sub>4</sub>/metal interfaces.","authors":"Wen Ai, Xiaohui Hu, Tao Xu, Jian Yang, Litao Sun","doi":"10.1039/d4nh00493k","DOIUrl":"https://doi.org/10.1039/d4nh00493k","url":null,"abstract":"<p><p>Janus MoSiGeN<sub>4</sub> monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN<sub>4</sub> monolayer and metal electrode contacts. The results demonstrated that the n-type/p-type Schottky and n-type Ohmic contacts can be realized in metal/MoSiGeN<sub>4</sub> by changing the built-in electric dipole orientation of MoSiGeN<sub>4</sub>. Specifically, the contact type of Cu/MoSiGeN<sub>4</sub> (Au/MoSiGeN<sub>4</sub>) transfers from an n-type Schottky (p-type Schottky) contact to an n-type Ohmic (n-type Schottky) contact when the contact side of MoSiGeN<sub>4</sub> switches from Si-N to Ge-N. In addition, the Fermi level pinning (FLP) effect of metal/MoSiGeN<sub>4</sub> with the Si-N side is weaker than that of metal/MoSiGeN<sub>4</sub> with the Ge-N side due to the effect of intrinsic dipole and interface dipole. Notably, a simplified mathematical expression Δ<i>V</i>/<i>W</i><sub>M</sub> is developed to describe the Schottky barrier height at metal/MoSiGeN<sub>4</sub> interfaces using the machine learning method. These findings offer valuable guidance for the design and development of high-performance Janus MoSiGeN<sub>4</sub>-based electronic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced upconversion and photoconductive nanocomposites of lanthanide-doped nanoparticles functionalized with low-vibrational-energy inorganic ligands. 以低振动能无机配体功能化的镧掺杂纳米粒子增强上转换和光导纳米复合材料。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-14 DOI: 10.1039/d4nh00555d
Jia-Ahn Pan, Xiao Qi, Emory M Chan
{"title":"Enhanced upconversion and photoconductive nanocomposites of lanthanide-doped nanoparticles functionalized with low-vibrational-energy inorganic ligands.","authors":"Jia-Ahn Pan, Xiao Qi, Emory M Chan","doi":"10.1039/d4nh00555d","DOIUrl":"https://doi.org/10.1039/d4nh00555d","url":null,"abstract":"<p><p>Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF<sub>4</sub> UCNPs with low-vibrational-energy Sn<sub>2</sub>S<sub>6</sub><sup>4-</sup> ligands. Raman spectroscopy and elemental mapping are employed to confirm the binding of Sn<sub>2</sub>S<sub>6</sub><sup>4-</sup> ligands to UCNPs. This binding enhances upconversion efficiencies up to a factor of 16, consistent with an increase in the luminescent lifetimes of the lanthanide ions. Annealing Sn<sub>2</sub>S<sub>6</sub><sup>4-</sup>-capped UCNPs results in the formation of a nanocomposite comprised of UCNPs embedded within an interconnected matrix of SnS<sub>2</sub>, enabling each UCNP to be electrically accessible through the semiconducting SnS<sub>2</sub> matrix. This facilitates the integration of UCNPs into electronic devices, which we demonstrate through the fabrication of a UCNP-SnS<sub>2</sub> photodetector that detects UV and near-IR light. Our findings show the promise of using inorganic capping agents to enhance the properties of UCNPs while facilitating their integration into optoelectronic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spillover of active oxygen intermediates of binary RuO2/Nb2O5 nanowires for highly active and robust acidic oxygen evolution. 二元RuO2/Nb2O5纳米线中活性氧中间体的外溢及高活性强酸性析氧
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-13 DOI: 10.1039/d4nh00437j
Linqing Liao, Wangyan Gou, Mingkai Zhang, Xiaohe Tan, Zening Qi, Min Xie, Yuanyuan Ma, Yongquan Qu
{"title":"Spillover of active oxygen intermediates of binary RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> nanowires for highly active and robust acidic oxygen evolution.","authors":"Linqing Liao, Wangyan Gou, Mingkai Zhang, Xiaohe Tan, Zening Qi, Min Xie, Yuanyuan Ma, Yongquan Qu","doi":"10.1039/d4nh00437j","DOIUrl":"https://doi.org/10.1039/d4nh00437j","url":null,"abstract":"<p><p>Over-oxidation of surface ruthenium active sites of RuO<sub><i>x</i></sub>-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm<sup>-2</sup>, a small Tafel slope of 73 mV dec<sup>-1</sup>, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO<sub>2</sub> to Nb<sub>2</sub>O<sub>5</sub> and the subsequent participation of lattice oxygen of Nb<sub>2</sub>O<sub>5</sub> instead of RuO<sub>2</sub> for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle assembly with customisable fluorescence properties and excellent biocompatibility. 纳米粒子组装具有可定制的荧光特性和良好的生物相容性。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-07 DOI: 10.1039/d4nh90084g
Ignacio Insua
{"title":"Nanoparticle assembly with customisable fluorescence properties and excellent biocompatibility.","authors":"Ignacio Insua","doi":"10.1039/d4nh90084g","DOIUrl":"https://doi.org/10.1039/d4nh90084g","url":null,"abstract":"<p><p>This article highlights the recent work by Wang, Qi, <i>et al.</i> (<i>Nanoscale Horiz.</i>, 2024, https://doi.org/10.1039/D4NH00400K) on the full-color peptide-based fluorescent nanomaterials assembled under the control of amino acid doping.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of oxygen reduction via chemical affinity in NiO/SiO2 interfaces irradiated with keV energy hydrogen and helium ions for heterostructure fabrication. 氢氦离子辐照制备异质结构时NiO/SiO2界面化学亲和还原氧的机理
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2025-01-02 DOI: 10.1039/d4nh00460d
Mario Mery, Claudio Gonzalez-Fuentes, Igor Stanković, Jorge M Nuñez, Jorge E Valdés, Myriam H Aguirre, Carlos García
{"title":"Mechanism of oxygen reduction <i>via</i> chemical affinity in NiO/SiO<sub>2</sub> interfaces irradiated with keV energy hydrogen and helium ions for heterostructure fabrication.","authors":"Mario Mery, Claudio Gonzalez-Fuentes, Igor Stanković, Jorge M Nuñez, Jorge E Valdés, Myriam H Aguirre, Carlos García","doi":"10.1039/d4nh00460d","DOIUrl":"https://doi.org/10.1039/d4nh00460d","url":null,"abstract":"<p><p>Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H<sup>+</sup>) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He<sup>+</sup>) irradiation. Our results indicate that H<sup>+</sup> chemical affinity with oxygen is the primary mechanism for efficient atom remotion, as opposed to He<sup>+</sup> irradiation, where the chemical affinity for oxygen is negligible.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信