Xianxue Zhang, Ruikai Du, Shichao Xu, Xinyue Wang and Zhen-Gang Wang
{"title":"Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement†","authors":"Xianxue Zhang, Ruikai Du, Shichao Xu, Xinyue Wang and Zhen-Gang Wang","doi":"10.1039/D4NH00252K","DOIUrl":"10.1039/D4NH00252K","url":null,"abstract":"<p >Dynamic DNA-based nanodevices offer versatile molecular-level operations, but the majority of them suffer from sluggish kinetics, impeding the advancement of device complexity. In this work, we present the self-assembly of a cationic peptide with DNA to expedite toehold-mediated DNA strand displacement (TMSD) reactions, a fundamental mechanism enabling the dynamic control and actuation of DNA nanostructures. The target DNA is modified with a fluorophore and a quencher, so that the TMSD process can be monitored by recording the time-dependent fluorescence changes. The boosting effect of the peptides is found to be dependent on the peptide/DNA N/P ratio, the toehold/invader binding affinity, and the ionic strength with stronger effects observed at lower ionic strengths, suggesting that electrostatic interactions play a key role. Furthermore, we demonstrate that the cationic peptide enhances the responsiveness and robustness of DNA machinery tweezers or logic circuits (AND and OR) involving multiple strand displacement reactions in parallel and cascade, highlighting its broad utility across DNA-based systems of varying complexity. This work offers a versatile approach to enhance the efficiency of toehold-mediated DNA nanodevices, facilitating flexible design and broader applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1582-1586"},"PeriodicalIF":8.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shijie Li, Yanxin Chu, Xin Guo, Chengde Mao and Shou-Jun Xiao
{"title":"Circular RNA oligonucleotides: enzymatic synthesis and scaffolding for nanoconstruction†","authors":"Shijie Li, Yanxin Chu, Xin Guo, Chengde Mao and Shou-Jun Xiao","doi":"10.1039/D4NH00236A","DOIUrl":"10.1039/D4NH00236A","url":null,"abstract":"<p >We report the efficient synthesis of monomeric circular RNAs (circRNAs) in the size range of 16–44 nt with a novel DNA dumbbell splinting plus T4 DNA ligation strategy. Such a DNA dumbbell splinting strategy was developed by one group among ours recently for near-quantitative conversion of short linear DNAs into monomeric circular ones. Furthermore, using the 44 nt circRNA as scaffold strands, we constructed hybrid RNA:DNA and pure RNA:RNA double crossover tiles and their assemblies of nucleic acid nanotubes and flat arrays.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1749-1755"},"PeriodicalIF":8.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hu Zhang, Meng Li, Shao-Bo Mi, Shao-Dong Cheng, Lu Lu and Zhi-Gang Chen
{"title":"Electron beam lithography of GeTe through polymorphic phase transformation†","authors":"Hu Zhang, Meng Li, Shao-Bo Mi, Shao-Dong Cheng, Lu Lu and Zhi-Gang Chen","doi":"10.1039/D4NH00035H","DOIUrl":"10.1039/D4NH00035H","url":null,"abstract":"<p >We report two previously undiscovered phases of GeTe including the sphalerite (c-) phase and the hexagonal (h-) phase with interlayer van der Waals gaps. A polymorphic phase transformation from rhombohedral α-GeTe to c- and h-GeTe at near room temperature is first realized <em>via</em> electron beam irradiation. Their underlying thermodynamics and kinetics are illustrated using the <em>in situ</em> heating experiments and molecular dynamics simulations. Density-functional theory calculations indicate that c-GeTe exhibits typical metallic behavior and h-GeTe is a narrow-gap semiconductor with a strong spin–orbital coupling effect. Our findings shed light on a strategy for designing GeTe-based quantum devices compromising nanopillars and heterostructures <em>via</em> an atomic-scale electron beam lithography technique.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1574-1581"},"PeriodicalIF":8.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kapil D. Patel, Zalike Keskin-Erdogan, Prasad Sawadkar, Nik Syahirah Aliaa Nik Sharifulden, Mark Robert Shannon, Madhumita Patel, Lady Barrios Silva, Rajkumar Patel, David Y. S. Chau, Jonathan C. Knowles, Adam W. Perriman and Hae-Won Kim
{"title":"Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine","authors":"Kapil D. Patel, Zalike Keskin-Erdogan, Prasad Sawadkar, Nik Syahirah Aliaa Nik Sharifulden, Mark Robert Shannon, Madhumita Patel, Lady Barrios Silva, Rajkumar Patel, David Y. S. Chau, Jonathan C. Knowles, Adam W. Perriman and Hae-Won Kim","doi":"10.1039/D4NH00171K","DOIUrl":"10.1039/D4NH00171K","url":null,"abstract":"<p >Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1630-1682"},"PeriodicalIF":8.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. S. Anjali Devi, S. Madanan Anju, G. M. Lekha, R. S. Aparna and Sony George
{"title":"Luminescent carbon dots versus quantum dots and gold nanoclusters as sensors†","authors":"J. S. Anjali Devi, S. Madanan Anju, G. M. Lekha, R. S. Aparna and Sony George","doi":"10.1039/D4NH00107A","DOIUrl":"10.1039/D4NH00107A","url":null,"abstract":"<p >Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (<em>i.e.</em>, AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles. Moreover, this review carefully analyses the underlying principles of ultra-small nanoparticle sensors. We expect that this information on ultra-small nanoparticles will fuel research aimed at achieving precise control over their fluorescence properties and the broadening of their applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1683-1702"},"PeriodicalIF":8.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovations of metallic contacts on semiconducting 2D transition metal dichalcogenides toward advanced 3D-structured field-effect transistors","authors":"Byeongchan Kim, Seojoo Lee and Jin-Hong Park","doi":"10.1039/D4NH00030G","DOIUrl":"10.1039/D4NH00030G","url":null,"abstract":"<p >2D semiconductors, represented by transition metal dichalcogenides (TMDs), have the potential to be alternative channel materials for advanced 3D field-effect transistors, such as gate-all-around field-effect-transistors (GAAFETs) and complementary field-effect-transistors (C-FETs), due to their inherent atomic thinness, moderate mobility, and short scaling lengths. However, 2D semiconductors encounter several technological challenges, especially the high contact resistance issue between 2D semiconductors and metals. This review provides a comprehensive overview of the high contact resistance issue in 2D semiconductors, including its physical background and the efforts to address it, with respect to their applicability to GAAFET structures.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1417-1431"},"PeriodicalIF":8.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang, Bergoi Ibarlucea, Chuanhui Huang, Renhao Dong, Muhannad Al Aiti, Shirong Huang and Gianaurelio Cuniberti
{"title":"Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions","authors":"Wei Wang, Bergoi Ibarlucea, Chuanhui Huang, Renhao Dong, Muhannad Al Aiti, Shirong Huang and Gianaurelio Cuniberti","doi":"10.1039/D4NH00140K","DOIUrl":"10.1039/D4NH00140K","url":null,"abstract":"<p >The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal–organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, <em>etc.</em> MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, <em>etc.</em>, making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1432-1474"},"PeriodicalIF":8.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu
{"title":"Insight into mechanism for remarkable photocatalytic hydrogen evolution of Cu/Pr dual atom co-modified TiO2†","authors":"Hongshun Zheng, Baoye Zi, Tong Zhou, Guoyang Qiu, Zhongge Luo, Qingjie Lu, Alain Rafael Puente Santiago, Yumin Zhang, Jianhong Zhao, Jin Zhang, Tianwei He and Qingju Liu","doi":"10.1039/D4NH00196F","DOIUrl":"10.1039/D4NH00196F","url":null,"abstract":"<p >The development of high-activity photocatalysts is crucial for the current large-scale development of photocatalytic hydrogen applications. Herein, we have developed a strategy to significantly enhance the hydrogen photocatalytic activity of Cu/Pr di-atom co-modified TiO<small><sub>2</sub></small> architectures by selectively anchoring Cu single atoms on the oxygen vacancies of the TiO<small><sub>2</sub></small> surface and replacing a trace of Ti atoms in the bulk with rare earth Pr atoms. Calculation results demonstrated that the synergistic effect between Cu single atoms and Pr atoms regulates the electronic structure of Cu/Pr–TiO<small><sub>2</sub></small>, thus promoting the separation of photogenerated carriers and their directional migration to Cu single atoms for the photocatalytic reaction. Furthermore, the d-band center of Cu/Pr–TiO<small><sub>2</sub></small>, which is located at −4.70 eV, optimizes the adsorption and desorption behavior of H*. Compared to TiO<small><sub>2</sub></small>, Pr–TiO<small><sub>2</sub></small>, and Cu/TiO<small><sub>2</sub></small>, Cu/Pr–TiO<small><sub>2</sub></small> displays the best H* adsorption Gibbs free energy (−0.047 eV). Furthermore, experimental results confirmed that the photogenerated carrier lifetime of Cu/Pr–TiO<small><sub>2</sub></small> is not only the longest (2.45 ns), but its hydrogen production rate (34.90 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) also significantly surpasses those of Cu/TiO<small><sub>2</sub></small> (13.39 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and Pr–TiO<small><sub>2</sub></small> (0.89 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>). These findings open up a novel atomic perspective for the development of optimal hydrogen activity in dual-atom-modified TiO<small><sub>2</sub></small> photocatalysts.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1532-1542"},"PeriodicalIF":8.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotong Yu, Yifan Li, Renjie He, Yanwei Wen, Rong Chen, Baoxing Xu and Yuan Gao
{"title":"Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch†","authors":"Xiaotong Yu, Yifan Li, Renjie He, Yanwei Wen, Rong Chen, Baoxing Xu and Yuan Gao","doi":"10.1039/D4NH00245H","DOIUrl":"10.1039/D4NH00245H","url":null,"abstract":"<p >Gallium nitride offers an ideal material platform for next-generation high-power electronics devices, which enable a spectrum of applications. The thermal management of the ever-growing power density has become a major bottleneck in the performance, reliability, and lifetime of the devices. GaN/diamond heterostructures are usually adopted to facilitate heat dissipation, given the extraordinary thermal conduction properties of diamonds. However, thermal transport is limited by the interfacial conductance at the material interface between GaN and diamond, which is associated with significant mechanical stress at the atomic level. In this work, we investigate the effect of mechanical strain perpendicular to the GaN/diamond interface on the interfacial thermal conductance of heterostructures using full-atom non-equilibrium molecular dynamics simulations. We found that the heterostructure exhibits severe mechanical stress at the interface in the absence of loading, which is due to lattice mismatch. Upon tensile/compressive loading, the interfacial stress is more pronounced, and the strain is not identical across the interface owing to the contrasting elastic moduli of GaN and diamond. In addition, the interfacial thermal conductance can be notably enhanced and suppressed by tensile and compressive strains, respectively, leading to a 400% variation in thermal conductance. More detailed analyses reveal that the change in interfacial thermal conductance is related to the surface roughness and interfacial bonding strength, as described by a generalized relationship. Moreover, phonon analyses suggest that the unequal mechanical deformation under compressive strain in GaN and diamond induces different frequency shifts in the phonon spectra, leading to an enhancement in phonon overlapping energy, which promotes phonon transport at the interface and elevates the thermal conductance and <em>vice versa</em> for tensile strain. The effect of strain on interface thermal conductance was investigated at various temperatures. Based on the mechanical tunability of thermal conductance, we propose a conceptual design for a mechanical thermal switch that regulates thermal conductance with excellent sensitivity and high responsiveness. This study offers a fundamental understanding of how mechanical strain can adjust interface thermal conductance in GaN/diamond heterostructures with respect to mechanical stress, deformation, and phonon properties. These results and findings lay the theoretical foundation for designing thermal management devices in a strain environment and shed light on developing intelligent thermal devices by leveraging the interplay between mechanics and thermal transport.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1557-1567"},"PeriodicalIF":8.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia J. Chang, Bin Yuan, Sandro Mignuzzi, Riccardo Sapienza, Francesco Mezzadri and Ludovico Cademartiri
{"title":"Colloidal TiO2 nanocrystals with engineered defectivity and optical properties†","authors":"Julia J. Chang, Bin Yuan, Sandro Mignuzzi, Riccardo Sapienza, Francesco Mezzadri and Ludovico Cademartiri","doi":"10.1039/D4NH00143E","DOIUrl":"10.1039/D4NH00143E","url":null,"abstract":"<p >Partially reduced forms of titanium dioxide (sometimes called “black” titania) have attracted widespread interest as promising photocatalysts of oxidation due to their absorption in the visible region. The main approaches to produce it rely on postprocessing at high temperatures (up to 800 °C) and high pressures (up to 40 bar) or on highly reactive precursors (<em>e.g.</em>, TiH<small><sub>2</sub></small>), and yield powders with poorly controlled sizes, shapes, defect concentrations and distributions. We describe an approach for the one-step synthesis of TiO<small><sub>2</sub></small> colloidal nanocrystals at atmospheric pressure and temperatures as low as 280 °C. The temperature of the reaction allows the density of oxygen vacancies to be controlled by nearly two orders of magnitude independently of their size, shape, or colloidal stability. This synthetic pathway appears to produce vacancies that are homogeneously distributed in the nanocrystals, rather than being concentrated in an amorphous shell. As a result, the defects are protected from oxidation and result in stable optical properties in oxidizing environments.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1568-1573"},"PeriodicalIF":8.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}