Ziqi Chen, Deyi Zhang, Ze Yang, Yan Xu, Xuqi Wang, Hao Huang, Fangcheng Qiu, Changshui Huang
{"title":"Doped-graphdiyne: synthesis, theoretical prediction and application for electrochemical energy storage.","authors":"Ziqi Chen, Deyi Zhang, Ze Yang, Yan Xu, Xuqi Wang, Hao Huang, Fangcheng Qiu, Changshui Huang","doi":"10.1039/d5nh00201j","DOIUrl":null,"url":null,"abstract":"<p><p>Graphdiyne (GDY), an emerging carbon allotrope with sp-sp<sup>2</sup> hybridized networks, possesses a distinctive hierarchical architecture combining two-dimensional planar conjugation with three-dimensional porous frameworks. This unique configuration, characterized by abundant acetylene linkages and uniformly distributed nanopores, provides exceptional advantages for metal ion intercalation kinetics and heteroatomic integration. However, the material's development is constrained by morphological homogeneity and insufficient defect density. To expand the functional versatility of GDY-based systems and engineer enhanced storage capacities through defect engineering, strategic heteroatom doping has emerged as a pivotal modification strategy. Recent advancements in GDY functionalization have demonstrated remarkable progress in tailoring its electrochemical properties <i>via</i> atomic-scale modifications. This review systematically analyzes contemporary synthetic approaches for heteroatom incorporation in GDY matrices, including single-element doping, functional group grafting, and heteroatomic anchoring techniques. Furthermore, we critically evaluate theoretical simulations elucidating doping mechanisms and summarize cutting-edge applications in metal-ion battery systems. Through comprehensive discussion of structure-property relationships in doped GDY electrodes, this work aims to stimulate innovative designs of advanced carbon architectures for next-generation energy storage technologies.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00201j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphdiyne (GDY), an emerging carbon allotrope with sp-sp2 hybridized networks, possesses a distinctive hierarchical architecture combining two-dimensional planar conjugation with three-dimensional porous frameworks. This unique configuration, characterized by abundant acetylene linkages and uniformly distributed nanopores, provides exceptional advantages for metal ion intercalation kinetics and heteroatomic integration. However, the material's development is constrained by morphological homogeneity and insufficient defect density. To expand the functional versatility of GDY-based systems and engineer enhanced storage capacities through defect engineering, strategic heteroatom doping has emerged as a pivotal modification strategy. Recent advancements in GDY functionalization have demonstrated remarkable progress in tailoring its electrochemical properties via atomic-scale modifications. This review systematically analyzes contemporary synthetic approaches for heteroatom incorporation in GDY matrices, including single-element doping, functional group grafting, and heteroatomic anchoring techniques. Furthermore, we critically evaluate theoretical simulations elucidating doping mechanisms and summarize cutting-edge applications in metal-ion battery systems. Through comprehensive discussion of structure-property relationships in doped GDY electrodes, this work aims to stimulate innovative designs of advanced carbon architectures for next-generation energy storage technologies.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.