Spiking frequency adaptability and multi-weight synergy in artificial neuronal modules via bifunctional NbOx memristors.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shuai-Ming Chen, Li-Chung Shih, Jing-Ci Gao, Song-Xian You, Kuan-Ting Chen, Pei-Lin Lin, Kai-Shin Hsu, Chi-Chien Chen, Wei-Lun Chen, Jen-Sue Chen
{"title":"Spiking frequency adaptability and multi-weight synergy in artificial neuronal modules <i>via</i> bifunctional NbO<sub><i>x</i></sub> memristors.","authors":"Shuai-Ming Chen, Li-Chung Shih, Jing-Ci Gao, Song-Xian You, Kuan-Ting Chen, Pei-Lin Lin, Kai-Shin Hsu, Chi-Chien Chen, Wei-Lun Chen, Jen-Sue Chen","doi":"10.1039/d5nh00268k","DOIUrl":null,"url":null,"abstract":"<p><p>To address the limitations of current artificial neurons in neuromorphic hardware implementation, NbO<sub><i>x</i></sub>-based bifunctional memristors are fabricated to construct oscillatory units and advanced neuronal modules. NbO<sub><i>x</i>-</sub>based memristors operate as either threshold-switching memristors (TSMs) or dynamic memristors (DyMs), depending on whether electroforming is applied. TSMs are employed to build oscillatory units and further reconfigured into a weighted multi-terminal neuronal module, enabling real-time spatiotemporal summation of input spikes based on the leaky integrate-and-fire model. This module demonstrated the capability to perform spike summation and multi-weight synergy. Leveraging the gradual resistance change characteristic of DyMs, a sequential encoder is implemented, allowing the system to recognize and respond to the temporal order of spiking signals. Additionally, a DyM is integrated into the oscillatory unit to construct intensification and attenuation neurons, enabling short-term spiking frequency adaptation. The versatile spiking performance of our NbO<sub><i>x</i></sub> bifunctional memristor provides a strategic foundation for developing artificial neurons for next-generation bio-inspired spiking neural networks.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00268k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the limitations of current artificial neurons in neuromorphic hardware implementation, NbOx-based bifunctional memristors are fabricated to construct oscillatory units and advanced neuronal modules. NbOx-based memristors operate as either threshold-switching memristors (TSMs) or dynamic memristors (DyMs), depending on whether electroforming is applied. TSMs are employed to build oscillatory units and further reconfigured into a weighted multi-terminal neuronal module, enabling real-time spatiotemporal summation of input spikes based on the leaky integrate-and-fire model. This module demonstrated the capability to perform spike summation and multi-weight synergy. Leveraging the gradual resistance change characteristic of DyMs, a sequential encoder is implemented, allowing the system to recognize and respond to the temporal order of spiking signals. Additionally, a DyM is integrated into the oscillatory unit to construct intensification and attenuation neurons, enabling short-term spiking frequency adaptation. The versatile spiking performance of our NbOx bifunctional memristor provides a strategic foundation for developing artificial neurons for next-generation bio-inspired spiking neural networks.

基于双功能NbOx记忆电阻器的人工神经元模块的峰值频率适应性和多权重协同。
为了解决当前人工神经元在神经形态硬件实现方面的局限性,制作了基于nbox的双功能忆阻器来构建振荡单元和高级神经元模块。基于nbox的忆阻器可以作为阈值开关忆阻器(TSMs)或动态忆阻器(DyMs)工作,这取决于是否应用电铸。利用tsm构建振荡单元,并进一步重新配置为加权的多终端神经元模块,实现基于泄漏集成-发射模型的输入尖峰实时时空求和。该模块演示了执行尖峰求和和多权重协同的能力。利用dym的逐渐电阻变化特性,实现了顺序编码器,允许系统识别和响应尖峰信号的时间顺序。此外,DyM被集成到振荡单元中以构建增强和衰减神经元,从而实现短期尖峰频率适应。我们的NbOx双功能记忆电阻器的多用途峰值性能为开发下一代生物激发峰值神经网络的人工神经元提供了战略基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信