Organometallics最新文献

筛选
英文 中文
Investigating the Reactivity of Removing a Sulfur Atom from Propylene Sulfide with a Geminal Frustrated Lewis Pair and the Origin of Their Activation Barriers 研究用双子受挫路易斯对从硫化丙烯中去除一个硫原子的反应活性及其活化障碍的起源
IF 2.5 3区 化学
Organometallics Pub Date : 2024-10-04 DOI: 10.1021/acs.organomet.4c0027810.1021/acs.organomet.4c00278
Chi-Shiun Wu,  and , Ming-Der Su*, 
{"title":"Investigating the Reactivity of Removing a Sulfur Atom from Propylene Sulfide with a Geminal Frustrated Lewis Pair and the Origin of Their Activation Barriers","authors":"Chi-Shiun Wu,&nbsp; and ,&nbsp;Ming-Der Su*,&nbsp;","doi":"10.1021/acs.organomet.4c0027810.1021/acs.organomet.4c00278","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00278https://doi.org/10.1021/acs.organomet.4c00278","url":null,"abstract":"<p >Using density functional theory (B3LYP-D3(BJ)/def2-TZVP), we explored the origin of the reaction barriers and reactivity for the elimination of one sulfur atom from propylene sulfide by methylene-linked geminal intramolecular G13/G15-based (G13 = group 13 element and G15 = group 15 element) frustrated Lewis pair (FLP) molecules. In contrast to the traditional understanding validated by previous theoretical examinations, our B3LYP computational results demonstrate that the elimination reactions with intramolecular geminal FLP-type molecules in this study proceed through multiple steps rather than a one-step concerted process. Our B3LYP computations reveal that during the multistep process the second transition state, <b>G13/G15-TS2</b>, serves as the rate-determining step, featuring a nucleophilic attack by the Lewis base at the G15 center on the least hindered sulfur atom of propylene sulfide, leading to the release of a propylene molecule. Based on our theoretical investigations using the activation strain model, the activation barrier of the essential second transition step is primarily determined by the structural deformation energy of the intramolecular geminal G13/G15-type FLP fragment, characterized by its flexible linear bent structure, as opposed to the rigid structure of the propylene sulfide fragment.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palladium-Mediated Site-Selective C–H Bond Activation and Arylation of 9(10H)-Acridinone and Mechanistic Investigation: Stoichiometric and Catalytic Approaches 钯介导的 9(10H)-吖啶酮的位点选择性 C-H 键活化和芳基化及机理研究:化学计量和催化方法
IF 2.5 3区 化学
Organometallics Pub Date : 2024-10-04 DOI: 10.1021/acs.organomet.4c0035610.1021/acs.organomet.4c00356
Jean-Ho Chu*, Jin Lee, Guan-Wei Liao, Lin-En Zeng, Chien-Wen Lin, Ching-Hung Cheng, Wen-Chieh Lin, Li-Ching Shen, Guo-Feng Chen, Rong Chang and Andrew C.-H. Sue, 
{"title":"Palladium-Mediated Site-Selective C–H Bond Activation and Arylation of 9(10H)-Acridinone and Mechanistic Investigation: Stoichiometric and Catalytic Approaches","authors":"Jean-Ho Chu*,&nbsp;Jin Lee,&nbsp;Guan-Wei Liao,&nbsp;Lin-En Zeng,&nbsp;Chien-Wen Lin,&nbsp;Ching-Hung Cheng,&nbsp;Wen-Chieh Lin,&nbsp;Li-Ching Shen,&nbsp;Guo-Feng Chen,&nbsp;Rong Chang and Andrew C.-H. Sue,&nbsp;","doi":"10.1021/acs.organomet.4c0035610.1021/acs.organomet.4c00356","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00356https://doi.org/10.1021/acs.organomet.4c00356","url":null,"abstract":"<p >Palladium-mediated site-selective C–H bond activations of 9(10<i>H</i>)-acridinone, resulting in the formation of 4- and 1-arylated 9(10<i>H</i>)-acridinones, are presented through the use of both stoichiometric and catalytic experiments. In the stoichiometric reactions, two distinct classes of acridinone palladacycles are generated via C (4)–H and C (1)–H bond activations, with the pyridine and ketone groups serving as the directing group, respectively. The constitutional conformation and thermal stability of these palladacycles were elucidated through both X-ray crystallography and NMR spectroscopy. Additionally, an investigation was conducted into the interconversion of C (4 and 1)–H bond-activated palladacycles in trifluoroacetic acid and acetic acid. During the course of C (1)–H bond arylation, a serendipitous discovery led to the isolation of a chromeno [4,3,<i>2-kl</i>] acridinone compound as a byproduct, showcasing good fluorescence properties. Controlled experiments, kinetic isotope effect study, key palladacycles, and the formation of corresponding products support the proposed mechanisms for these presented reactions. Finally, the pyridinyl group can serve as a removable directing group and can be readily eliminated from both 4- and 1-arylated 9(10<i>H</i>)-acridinones.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00356","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halide-Assisted Electrophilic C–H Activation in Aqueous Acid and Salt Solutions for the Synthesis of Ru(III)-Abnormal NHC Complexes 在酸和盐水溶液中利用卤化物辅助亲电 C-H 活化法合成 Ru(III)-Anormal NHC 配合物
IF 2.5 3区 化学
Organometallics Pub Date : 2024-10-03 DOI: 10.1021/acs.organomet.4c0027310.1021/acs.organomet.4c00273
Nida Shahid, Vishal Budhija and Amrendra K. Singh*, 
{"title":"Halide-Assisted Electrophilic C–H Activation in Aqueous Acid and Salt Solutions for the Synthesis of Ru(III)-Abnormal NHC Complexes","authors":"Nida Shahid,&nbsp;Vishal Budhija and Amrendra K. Singh*,&nbsp;","doi":"10.1021/acs.organomet.4c0027310.1021/acs.organomet.4c00273","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00273https://doi.org/10.1021/acs.organomet.4c00273","url":null,"abstract":"<p >Synthesis of Ru(III)-aNHC complexes <b>1a’</b> and <b>1b’</b> has been achieved in the aqueous acid medium at ambient temperature. The abnormal binding mode of NHC through this method was undoubtedly confirmed by the synthesis of Ru(III)-aNHC complex <b>2a’</b> from the C(2)-methylated ligand precursor. The conversion of abnormal to normal NHC complexes (<b>1a</b> and <b>1b</b>) was observed in the reaction medium. A pyridine-rollover mechanism for the conversion of abnormal to normal NHC has been proposed and validated by suitable substitution at the ligand backbone. Complexes <b>3a</b> (Ru-nNHC) and <b>3a’</b> (Ru-aNHC) were prepared with the bidentate ligand precursor having a Me-substituted pyridine to prohibit the “pyridine-rollover” pathway. The conversion of abnormal NHC complex <b>3a’</b> to the normal NHC complex <b>3a</b> was found to be suppressed in aqueous solutions at room temperature as the λ<sub>max</sub> for <b>3a’</b> remained the same even after 15 days, suggesting the role of C(3)-H of pyridine in the process. An investigation of this synthetic protocol in various aqueous acid/salt solutions indicates that Cl<sup>–</sup> ions are required to form the complexes, indicating a halide-assisted C–H activation pathway. All complexes have been characterized using various spectroscopic techniques. The molecular structures of complexes <b>1a’</b>, <b>1b</b>, <b>2a’</b>, and <b>3a</b> have been determined using the single-crystal X-ray diffraction technique.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni-Catalyzed ZnCl2–Assisted Domino Coupling of Enones and Alkyne-Tethered Vinylcyclopropanes via C–C Bond Cleavage of Cyclopropane 镍催化 ZnCl2 通过环丙烷的 C-C 键裂解作用辅助烯酮和炔烃拴乙烯基环丙烷的多米诺偶联反应
IF 2.5 3区 化学
Organometallics Pub Date : 2024-10-03 DOI: 10.1021/acs.organomet.4c0034110.1021/acs.organomet.4c00341
Mika Sakazaki,  and , Shin-ichi Ikeda*, 
{"title":"Ni-Catalyzed ZnCl2–Assisted Domino Coupling of Enones and Alkyne-Tethered Vinylcyclopropanes via C–C Bond Cleavage of Cyclopropane","authors":"Mika Sakazaki,&nbsp; and ,&nbsp;Shin-ichi Ikeda*,&nbsp;","doi":"10.1021/acs.organomet.4c0034110.1021/acs.organomet.4c00341","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00341https://doi.org/10.1021/acs.organomet.4c00341","url":null,"abstract":"<p >A Ni-catalyzed, ZnCl<sub>2</sub>-assisted domino coupling of enones and alkyne-tethered vinylcyclopropanes (VCPs) was developed. The reaction proceeds through the following steps: (1) oxidative cyclization of a Ni(0) complex with an enone and the alkyne component of the alkyne-tethered VCP in the presence of ZnCl<sub>2</sub>, (2) carbonickelation of the VCP moiety, (3) β-C elimination leading to C–C bond cleavage of the cyclopropane moiety, and (4) β-H elimination to stereoselectively obtain (<i>E</i>)-1,3-diene as the coupling product. The optimal reaction conditions and scope of enones and alkyne-tethered VCPs were systematically explored. The reaction mechanism was investigated by performing deuterium-labeling experiments and density functional theory (DFT) calculations on the model compounds. The results clarify that the β-C elimination process occurs readily, and the Ni(0) precatalyst is regenerated via the 1,4-addition of H–Ni(II) species, generated by β-H elimination, to an excess of enone, followed by Zn reduction of the formed 1,4-adduct.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalization Strategy in 2D Flexible Zn(BTTB)-MOF for Improving Storage and Release of Anticancer Drugs: A Comprehensive Computational Investigation 二维柔性 Zn(BTTB)-MOF中用于改善抗癌药物储存和释放的功能化策略:全面的计算研究
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-30 DOI: 10.1021/acs.organomet.3c0053510.1021/acs.organomet.3c00535
Shabnam Naderlou*, Morteza Vahedpour and Douglas M. Franz, 
{"title":"Functionalization Strategy in 2D Flexible Zn(BTTB)-MOF for Improving Storage and Release of Anticancer Drugs: A Comprehensive Computational Investigation","authors":"Shabnam Naderlou*,&nbsp;Morteza Vahedpour and Douglas M. Franz,&nbsp;","doi":"10.1021/acs.organomet.3c0053510.1021/acs.organomet.3c00535","DOIUrl":"https://doi.org/10.1021/acs.organomet.3c00535https://doi.org/10.1021/acs.organomet.3c00535","url":null,"abstract":"<p >A multiscale computational approach was used to investigate the interaction, adsorption, and diffusion of three anticancer drugs, 5-fluorouracil (5-FU), busulfan (BU), and cisplatin (CIS), within the pores of a 2D flexible Zn-based MOF (Zn(BTTB)-MOF) functionalized with –NH<sub>2</sub>, –NO<sub>2</sub>, −OH, and -SH groups. The DFT analysis results indicated that adding functional groups to the H<sub>3</sub>BTTB organic linker created additional binding sites, resulting in stronger interactions between the drugs and the modified structures by 17.5% for NO<sub>2</sub>–Zn(BTTB)-MOF···5-FU to 115% for OH-Zn(BTTB)-MOF···BU in binding energies. Our grand canonical Monte Carlo (GCMC) studies revealed that both functionalized and pristine structures exhibited a high drug-loading capacity, increasing to ∼13, 15, and 24% for CIS, 5-FU, and BU, respectively. Molecular dynamics (MD) simulations indicated a decrease in the dynamics of the modified structures as a function of simulation time, with calculated diffusion coefficients ranging from (0.78–15.4) × 10<sup>–12</sup> m<sup>2</sup>·s<sup>–1</sup>, consistent with previous findings in drug release. The study highlights the significance of adding functional groups to the Zn(BTTB)-MOF organic linker, as it significantly enhances the binding energy of anticancer drugs. Functionalized Zn(BTTB)-MOF enhances drug interactions due to additional binding sites, increasing drug-loading capacity and resulting in slower drug diffusion, making it more effective for anticancer drug delivery.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Production from Aqueous Formic Acid through the Ligand Design Strategy in Half-Sandwich Ruthenium Complexes 通过半三明治钌配合物配体设计策略从甲酸水溶液中制氢
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-30 DOI: 10.1021/acs.organomet.4c0035710.1021/acs.organomet.4c00357
Sanjeev Kushwaha, Tushar A. Kharde, Ralf Köppe and Sanjay Kumar Singh*, 
{"title":"Hydrogen Production from Aqueous Formic Acid through the Ligand Design Strategy in Half-Sandwich Ruthenium Complexes","authors":"Sanjeev Kushwaha,&nbsp;Tushar A. Kharde,&nbsp;Ralf Köppe and Sanjay Kumar Singh*,&nbsp;","doi":"10.1021/acs.organomet.4c0035710.1021/acs.organomet.4c00357","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00357https://doi.org/10.1021/acs.organomet.4c00357","url":null,"abstract":"<p >Herein, we synthesized water-soluble ruthenium complexes [(η<sup>6</sup>-<i>p</i>-cymene)Ru(κ<sup>2</sup>-L)]<sup>+</sup> ([<b>C-1</b>]–[<b>C-5</b>]) ligated with substituted bis-imidazole methane-based ligands (<b>L1–L5</b>) and the molecular structures of the representative complexes [<b>C-2</b>] and [<b>C-4</b>] were established by single-crystal X-ray diffraction. We screened the synthesized complexes for the catalytic dehydrogenation of formic acid (FA) in water, where substitution on the bis-imidazole methane ligands was found to exert a significant impact on the catalytic activity of the complexes. The results inferred that, among the screened catalysts, [<b>C-5</b>] outperformed others with an initial turnover frequency (TOF) of 1831 h<sup>–1</sup> at 90 °C. One of the most notable features of [<b>C-5</b>] was its exceptional long-term stability, as it maintained efficient H<sub>2</sub> production from FA for 35 catalytic runs and remained active even after 60 days without any significant deactivation, reaching a turnover number (TON) of 35,000. Furthermore, reaction kinetics and the influence of various reaction parameters are thoroughly examined; comprehensive mass and NMR investigations under both catalytic and control conditions are conducted, and theoretical studies are performed to gain more insights into the reaction pathway of FA dehydrogenation over the studied catalysts.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selectivity of Ru and Fe PR2NR’2 Catalysts Toward Acceptorless Dehydrogenation of Benzylamine Ru 和 Fe PR2NR'2 催化剂对苯甲胺无受体脱氢反应的选择性
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-29 DOI: 10.1021/acs.organomet.4c0034510.1021/acs.organomet.4c00345
Amrit S. Nanuwa, Matthew D. Hoffman, Kiran Nandi and Johanna M. Blacquiere*, 
{"title":"Selectivity of Ru and Fe PR2NR’2 Catalysts Toward Acceptorless Dehydrogenation of Benzylamine","authors":"Amrit S. Nanuwa,&nbsp;Matthew D. Hoffman,&nbsp;Kiran Nandi and Johanna M. Blacquiere*,&nbsp;","doi":"10.1021/acs.organomet.4c0034510.1021/acs.organomet.4c00345","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00345https://doi.org/10.1021/acs.organomet.4c00345","url":null,"abstract":"<p >The performance of six ruthenium catalysts and two iron catalysts were evaluated toward the acceptorless dehydrogenation of benzylamine. All catalysts shared the common structure [M(Cp/Cp*)(P<sup>R</sup><sub>2</sub>N<sup>R’</sup><sub>2</sub>)(MeCN)]PF<sub>6</sub> (M = Fe, Ru; Cp = cyclopentadienyl; Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; P<sup>R</sup><sub>2</sub>N<sup>R’</sup><sub>2</sub> = 1,5-R′-3,7-R-1,5-diaza-3,7-diphosphacyclooctane) in which the P<sup>R</sup><sub>2</sub>N<sup>R’</sup><sub>2</sub> ligands contain a pendant tertiary amine that enables cooperative catalytic mechanisms. Catalytic activity and selectivity were evaluated to identify the optimal catalyst structural features. The iron catalyst [Fe(Cp)(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)(MeCN)]PF<sub>6</sub> demonstrated near-exclusive selectivity for the acceptorless dehydrogenative coupled product, <i>N</i>-benzylidenebenzylamine. The absence of the hydrogen-borrowed (dibenzylamine) product indicates that this iron catalyst strongly favors dehydrogenation pathways over hydrogenation. This was confirmed through the control reactions. The performance of [Fe(Cp)(P<sup>Ph</sup><sub>2</sub>N<sup>Ph</sup><sub>2</sub>)(MeCN)]PF<sub>6</sub> was optimized, but the catalyst was ineffective toward a broader scope of substrates.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pnictogen Bonding at the Core of a Carbene-Stiborane-Gold Complex: Impact on Structure and Reactivity 碳-锡硼烷-金复合物核心的正锑结合:对结构和反应活性的影响
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-26 DOI: 10.1021/acs.organomet.4c0034710.1021/acs.organomet.4c00347
Paula Castro Castro,  and , François P. Gabbaï*, 
{"title":"Pnictogen Bonding at the Core of a Carbene-Stiborane-Gold Complex: Impact on Structure and Reactivity","authors":"Paula Castro Castro,&nbsp; and ,&nbsp;François P. Gabbaï*,&nbsp;","doi":"10.1021/acs.organomet.4c0034710.1021/acs.organomet.4c00347","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00347https://doi.org/10.1021/acs.organomet.4c00347","url":null,"abstract":"<p >Our interest in the design of ambiphilic ligands and their coordination to gold has led us to synthesize an indazol-3-ylidene gold chloride complex functionalized at the 4-position of the indazole backbone by a stibine functionality. The antimony center of this new complex cleanly reacts with <i>o</i>-chloranil to afford the corresponding stiborane derivative. Structural analysis indicates that the stiborane coordination environment is best described as a distorted square pyramid whose open face is oriented toward the gold center, allowing for the formation of a long donor–acceptor, or pnictogen, Au → Sb bonding interaction. The presence of this interaction, which has been probed computationally, is also manifested in the enhanced catalytic activity of this complex in the cyclization of <i>N</i>-propargyl-4-fluorobenzamide.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Formic Acid Production by CO2 Hydrogenation with Ir Complexes in HFIP under Supercritical Conditions 在超临界条件下利用 HFIP 中的铱络合物通过二氧化碳加氢直接生产甲酸
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-24 DOI: 10.1021/acs.organomet.4c0022910.1021/acs.organomet.4c00229
Seo Ono, Ryoichi Kanega and Hajime Kawanami*, 
{"title":"Direct Formic Acid Production by CO2 Hydrogenation with Ir Complexes in HFIP under Supercritical Conditions","authors":"Seo Ono,&nbsp;Ryoichi Kanega and Hajime Kawanami*,&nbsp;","doi":"10.1021/acs.organomet.4c0022910.1021/acs.organomet.4c00229","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00229https://doi.org/10.1021/acs.organomet.4c00229","url":null,"abstract":"<p >Development of hydrogen energy carriers is crucial for society. Reversible (de)hydrogenation using carbon-based materials, particularly formic acid (FA), has been widely studied. Typically produced under basic conditions through CO<sub>2</sub> hydrogenation, formate salt is an energetically favorable form, but its dehydrogenation is challenging. This study found an equilibrium between formic acid dehydrogenation (FADH) and CO<sub>2</sub> hydrogenation under high-pressure conditions, facilitated organic solvent suppression of dehydrogenation, and accelerated hydride formation on an Ir catalyst. These conditions allow for the direct production of FA from CO<sub>2</sub> and H<sub>2</sub> in nonbasic 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) using a pentamethylcyclopentadienyl iridium (Cp*Ir) catalyst featuring a 4,4′-diamino-2,2′-bipyridine ligand (4DABP). Under mild conditions (50 °C, 1 MPa; CO<sub>2</sub>:H<sub>2</sub> ratio = 1:1), the catalyst achieved a turnover number (TON) of 2084 in 2 h. The use of supercritical CO<sub>2</sub> further increased the TON to 6100, producing a 0.12 M FA solution after 96 h. This study presents a novel method for the direct production of formic acid from CO<sub>2</sub> and H<sub>2</sub>, indicating new possibilities in the development of hydrogen energy carriers.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism Studies on the Chemical Stability of FIrpic, a Typical Blue Phosphorescent Emitter for Electroluminescence, in the Redox States 电致发光用典型蓝色磷光发光体 FIrpic 在氧化还原状态下的化学稳定性机理研究
IF 2.5 3区 化学
Organometallics Pub Date : 2024-09-23 DOI: 10.1021/acs.organomet.4c0030310.1021/acs.organomet.4c00303
Weiqiang Wei, Luyan Huang, Zihan Wang, Ya Xu, Zhou Fang, Yan He, Lisheng Zhang and Huifang Li*, 
{"title":"Mechanism Studies on the Chemical Stability of FIrpic, a Typical Blue Phosphorescent Emitter for Electroluminescence, in the Redox States","authors":"Weiqiang Wei,&nbsp;Luyan Huang,&nbsp;Zihan Wang,&nbsp;Ya Xu,&nbsp;Zhou Fang,&nbsp;Yan He,&nbsp;Lisheng Zhang and Huifang Li*,&nbsp;","doi":"10.1021/acs.organomet.4c0030310.1021/acs.organomet.4c00303","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00303https://doi.org/10.1021/acs.organomet.4c00303","url":null,"abstract":"<p >Iridium(III)bis[2-(4,6-difluorophenyl)pyridyl-N,C<sup>2′</sup>]picolinate (FIrpic) is a widely used light-blue phosphorescent material known for its favorable redox activity. However, the operational lifetime of FIrpic-based phosphorescent organic light-emitting diodes (PhOLEDs) remains unsatisfactory. To gain a deeper understanding of the chemical stability of FIrpic in various redox states, we explored its degradation mechanisms in the ground (<i>S</i><sub>0</sub>), one-electron oxidized (Ox.), and one-electron reduced (Re.) states using theoretical methods. Density functional theory (DFT) static calculations, combined with atomic center density matrix propagation (ADMP) simulations at temperatures of 500, 600, and 700 K, revealed that the cleavage of the Ir–N<sub>1</sub> bond is a crucial step in the chemical degradation process of FIrpic in both the ground and redox states. This bond breakage leads to a nonemissive five-coordinated trigonal bipyramidal intermediate. The degradation process is notably more facile in the redox states, particularly in the <i>Re</i>. Charge analysis indicates a decreasing trend in electronic delocalization between the LP<sub>N</sub> electron donor natural bond orbital (NBO) and the d*<sub>N–Ir(pic.)</sub> electron acceptor NBO, with the order S<sub>0</sub> &gt; Ox. &gt; Re. Our findings provide a deeper insight into the degradation mechanisms of FIrpic under different redox conditions. This understanding is crucial for the design of more stable materials in FIrpic-based PhOLEDs.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信