生命科学最新文献

筛选
英文 中文
Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition. 高产杨树基因型在茎叶过渡阶段表现出暂时稳定的低抗茎栓塞性和水力阻力分段。
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2024-10-10 DOI: 10.1111/pce.15197
Han Zhao, Xin Huang, Bolong Ma, Bo Jiang, Zaimin Jiang, Jing Cai
{"title":"Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition.","authors":"Han Zhao, Xin Huang, Bolong Ma, Bo Jiang, Zaimin Jiang, Jing Cai","doi":"10.1111/pce.15197","DOIUrl":"https://doi.org/10.1111/pce.15197","url":null,"abstract":"<p><p>Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acyl-turnover of acylplastoquinol enhances recovery of photodamaged PSII in Synechocystis. 酰基葡糖苷醌的酰基翻转增强了 Synechocystis 中光损伤 PSII 的恢复能力。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-10 DOI: 10.1111/tpj.17051
Haruhiko Jimbo, Mana Torii, Yuichiro Fujino, Yoshiki Tanase, Kazuki Kurima, Naoki Sato, Hajime Wada
{"title":"Acyl-turnover of acylplastoquinol enhances recovery of photodamaged PSII in Synechocystis.","authors":"Haruhiko Jimbo, Mana Torii, Yuichiro Fujino, Yoshiki Tanase, Kazuki Kurima, Naoki Sato, Hajime Wada","doi":"10.1111/tpj.17051","DOIUrl":"https://doi.org/10.1111/tpj.17051","url":null,"abstract":"<p><p>Photosynthetic electron transport is carried out by the electron carrier, plastoquinone (PQ). Recently, another form of PQ, acylplastoquinol (APQ), was discovered in Synechocystis sp. PCC 6803 (Synechocystis), but its physiological function in photosynthesis is unclear. In the present study, we identified a lipase encoded in sll0482 gene in Synechocystis that deacylates APQ and releases a free fatty acid and a reduced PQ (plastoquinol, PQH<sub>2</sub>), which we named acylplastoquinol lipase (APL). Disruption of apl gene increased APQ content, and recovery of photodamaged PSII under low light (LL) after the exposure to very high light (vHL) at 2500 μmol photons m<sup>-2</sup> sec<sup>-1</sup> without aeration (vHL) for 60 min, was suppressed in the Δapl cells. Δapl cells also show the slow rate of de novo synthesis of D1, a reaction center of PSII under such condition. Under high light, the cellular growth of Δapl was inhibited; however, disruption of apl gene did not affect the photosynthetic activity or photoinhibition of PSII. In wild-type cells, APQ content increased under vHL condition. Also, APQ was converted to PQH<sub>2</sub> after transfer to LL with aeration by ambient air. Such striking changes in APQ were not observed in Δapl cells. The deacylation of APQ by APL may help repair PSII when PSII cannot drive photosynthetic electron transport efficiently.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virome Characterization of Native Wild-Rice Plants Discovers a Novel Pathogenic Rice Polerovirus With World-Wide Circulation. 对原生野生稻植株病毒组的特征描述发现了一种在全球范围内传播的新型致病性水稻多角体病毒。
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2024-10-10 DOI: 10.1111/pce.15204
Wenkai Yan, Yu Zhu, Chengwu Zou, Wencheng Liu, Bei Jia, Jiangshuai Niu, Yaogui Zhou, Baoshan Chen, Rongbai Li, Shou-Wei Ding, Qingfa Wu, Zhongxin Guo
{"title":"Virome Characterization of Native Wild-Rice Plants Discovers a Novel Pathogenic Rice Polerovirus With World-Wide Circulation.","authors":"Wenkai Yan, Yu Zhu, Chengwu Zou, Wencheng Liu, Bei Jia, Jiangshuai Niu, Yaogui Zhou, Baoshan Chen, Rongbai Li, Shou-Wei Ding, Qingfa Wu, Zhongxin Guo","doi":"10.1111/pce.15204","DOIUrl":"https://doi.org/10.1111/pce.15204","url":null,"abstract":"<p><p>Pandemics originating from zoonotic viruses have posed significant threats to human health and agriculture. Recent discoveries have revealed that wild-rice plants also harbour viral pathogens capable of severely impacting rice production, a cornerstone food crop. In this study, we conducted virome analysis on ~1000 wild-rice individual colonies and discovered a novel single-strand positive-sense RNA virus prevalent in these plants. Through comprehensive genomic characterization and comparative sequence analysis, this virus was classified as a new species in the genus Polerovirus, designated Rice less tiller virus (RLTV). Our investigations elucidated that RLTV could be transmitted from wild rice to cultivated rice via a specific insect vector, the aphid Rhopalosiphum padi, causing less tiller disease symptoms in rice plants. We generated an infectious cDNA clone for RLTV and demonstrated systemic infection of rice cultivars and induction of severe disease symptoms following mechanical inoculation or stable genetic transformation. We further illustrated transmission of RLTV from stable transgenic lines to healthy rice plants by the aphid vector, leading to the development of disease symptoms. Notably, our database searches showed that RLTV and another polerovirus isolated from a wild plant species are widely circulating not only in wild rice but also cultivated rice around the world. Our findings provide strong evidence for a wild plant origin for rice viruses and underscore the imminent threat posed by aphid-transmitted rice Polerovirus to rice cultivar.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LlbHLH87 interacts with LlSPT to modulate thermotolerance via activation of LlHSFA2 and LlEIN3 in lily. LlbHLH87 与 LlSPT 相互作用,通过激活百合中的 LlHSFA2 和 LlEIN3 来调节耐热性。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-09 DOI: 10.1111/tpj.17060
Ze Wu, Xue Gong, Yinyi Zhang, Ting Li, Jun Xiang, Qianqian Fang, Junpeng Yu, Liping Ding, Jiahui Liang, Nianjun Teng
{"title":"LlbHLH87 interacts with LlSPT to modulate thermotolerance via activation of LlHSFA2 and LlEIN3 in lily.","authors":"Ze Wu, Xue Gong, Yinyi Zhang, Ting Li, Jun Xiang, Qianqian Fang, Junpeng Yu, Liping Ding, Jiahui Liang, Nianjun Teng","doi":"10.1111/tpj.17060","DOIUrl":"https://doi.org/10.1111/tpj.17060","url":null,"abstract":"<p><p>Basic helix-loop-helix (bHLH) proteins comprise one of the largest families of transcription factors in plants, which play roles in plant development, secondary metabolism, and the response to biotic/abiotic stresses. However, the roles of bHLH proteins in thermotolerance are largely unknown. Herein, we identified a heat-inducible member of the bHLH family in lily (Lilium longiflorum), named LlbHLH87, which plays a role in thermotolerance. LlbHLH87 was rapidly induced by transient heat stress, and its encoded protein was localized to the nucleus, exhibiting transactivation activity in both yeast and plant cells. Overexpression of LlbHLH87 in Arabidopsis enhanced basal thermotolerance, while silencing of LlbHLH87 in lily reduced basal thermotolerance. Further analysis showed that LlbHLH87 bound to the promoters of HEAT STRESS TRANSCRIPTION FACTOR A2 (LlHSFA2) and ETHYLENE-INSENSITIVE 3 (LlEIN3) to directly activate their expression. In addition, LlbHLH87 interacted with itself and with SPATULA (LlSPT) protein. LlSPT was activated by extended heat stress and its protein competed for the homologous interaction of LlbHLH87, which reduced the transactivation ability of LlbHLH87 for target genes. Compared with that observed under LlbHLH87 overexpression alone, co-overexpression of LlbHLH87 and LlSPT reduced the basal thermotolerance of lily to sudden heat shock, but improved its thermosensitivity to prolonged heat stress treatment. Overall, our data demonstrated that LlbHLH87 regulates thermotolerance via activation of LlEIN3 and LlHSFA2, along with an antagonistic interaction with LlSPT.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning to capture leaf shape in plant images: Validation by geometric morphometrics. 深度学习捕捉植物图像中的叶形:几何形态计量学验证。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-09 DOI: 10.1111/tpj.17053
Ladislav Hodač, Kevin Karbstein, Lara Kösters, Michael Rzanny, Hans Christian Wittich, David Boho, David Šubrt, Patrick Mäder, Jana Wäldchen
{"title":"Deep learning to capture leaf shape in plant images: Validation by geometric morphometrics.","authors":"Ladislav Hodač, Kevin Karbstein, Lara Kösters, Michael Rzanny, Hans Christian Wittich, David Boho, David Šubrt, Patrick Mäder, Jana Wäldchen","doi":"10.1111/tpj.17053","DOIUrl":"https://doi.org/10.1111/tpj.17053","url":null,"abstract":"<p><p>Plant leaves play a pivotal role in automated species identification using deep learning (DL). However, achieving reproducible capture of leaf variation remains challenging due to the inherent \"black box\" problem of DL models. To evaluate the effectiveness of DL in capturing leaf shape, we used geometric morphometrics (GM), an emerging component of eXplainable Artificial Intelligence (XAI) toolkits. We photographed Ranunculus auricomus leaves directly in situ and after herbarization. From these corresponding leaf images, we automatically extracted DL features using a neural network and digitized leaf shapes using GM. The association between the extracted DL features and GM shapes was then evaluated using dimension reduction and covariation models. DL features facilitated the clustering of leaf images by source populations in both in situ and herbarized leaf image datasets, and certain DL features were significantly associated with biological leaf shape variation as inferred by GM. DL features also enabled leaf classification into morpho-phylogenomic groups within the intricate R. auricomus species complex. We demonstrated that simple in situ leaf imaging and DL reproducibly captured leaf shape variation at the population level, while combining this approach with GM provided key insights into the shape information extracted from images by computer vision, a necessary prerequisite for reliable automated plant phenotyping.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockdown of β-conglycinin α' and α subunits alters seed protein composition and improves salt tolerance in soybean. 敲除β-共霉素α'和α亚基可改变种子蛋白质组成并提高大豆的耐盐性。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-09 DOI: 10.1111/tpj.17062
Rufei Yang, Yujie Ma, Zhongyi Yang, Yixiang Pu, Mengyu Liu, Jingyi Du, Zhiri Xu, Zefei Xu, Shanshan Zhang, Hengyou Zhang, Wei Zhang, Deyue Yu, Guizhen Kan
{"title":"Knockdown of β-conglycinin α' and α subunits alters seed protein composition and improves salt tolerance in soybean.","authors":"Rufei Yang, Yujie Ma, Zhongyi Yang, Yixiang Pu, Mengyu Liu, Jingyi Du, Zhiri Xu, Zefei Xu, Shanshan Zhang, Hengyou Zhang, Wei Zhang, Deyue Yu, Guizhen Kan","doi":"10.1111/tpj.17062","DOIUrl":"https://doi.org/10.1111/tpj.17062","url":null,"abstract":"<p><p>Soybean is an important plant source of protein worldwide. Increasing demands for soybean can be met by improving the quality of its seed protein. In this study, GmCG-1, which encodes the β-conglycinin α' subunit, was identified via combined genome-wide association study and transcriptome analysis. We subsequently knocked down GmCG-1 and its paralogues GmCG-2 and GmCG-3 with CRISPR-Cas9 technology and generated two stable multigene knockdown mutants. As a result, the β-conglycinin content decreased, whereas the 11S/7S ratio, total protein content and sulfur-containing amino acid content significantly increased. Surprisingly, the globulin mutant exhibited salt tolerance in both the germination and seedling stages. Little is known about the relationship between seed protein composition and the salt stress response in soybean. Metabonomics and RNA-seq analysis indicated that compared with the WT, the mutant was formed through a pathway that was more similar to that of active salicylic acid biosynthesis; however, the synthesis of cytokinin exhibited greater defects, which could lead to increased expression of plant dehydrin-related salt tolerance proteins and cell membrane ion transporters. Population evolution analysis suggested that GmCG-1, GmCG-2, and GmCG-3 were selected during soybean domestication. The soybean accessions harboring GmCG-1<sup>Hap1</sup> presented relatively high 11S/7S ratios and relatively high salt tolerance. In conclusion, knockdown of the β-conglycinin α and α' subunits can improve the nutritional quality of soybean seeds and increase the salt tolerance of soybean plants, providing a strategy for designing soybean varieties with high nutritional value and high salt tolerance.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolving role of mast cells in wound healing: insights from recent research and diverse models. 肥大细胞在伤口愈合中不断演变的作用:最新研究和各种模型的启示。
IF 3.2 4区 医学
Immunology & Cell Biology Pub Date : 2024-10-08 DOI: 10.1111/imcb.12824
Colin Guth, Nathachit Limjunyawong, Priyanka Pundir
{"title":"The evolving role of mast cells in wound healing: insights from recent research and diverse models.","authors":"Colin Guth, Nathachit Limjunyawong, Priyanka Pundir","doi":"10.1111/imcb.12824","DOIUrl":"https://doi.org/10.1111/imcb.12824","url":null,"abstract":"<p><p>Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell-derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARR1 and ARR12 modulate arsenite toxicity responses in Arabidopsis roots by transcriptionally controlling the actions of NIP1;1 and NIP6;1. ARR1和ARR12通过转录控制NIP1;1和NIP6;1的作用来调节拟南芥根部的亚砷酸盐毒性反应。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-08 DOI: 10.1111/tpj.17065
Ping Zhang, Fei Liu, Mostafa Abdelrahman, Qianqian Song, Fei Wu, Ruishan Li, Min Wu, Luis Herrera-Estrella, Lam-Son Phan Tran, Jin Xu
{"title":"ARR1 and ARR12 modulate arsenite toxicity responses in Arabidopsis roots by transcriptionally controlling the actions of NIP1;1 and NIP6;1.","authors":"Ping Zhang, Fei Liu, Mostafa Abdelrahman, Qianqian Song, Fei Wu, Ruishan Li, Min Wu, Luis Herrera-Estrella, Lam-Son Phan Tran, Jin Xu","doi":"10.1111/tpj.17065","DOIUrl":"https://doi.org/10.1111/tpj.17065","url":null,"abstract":"<p><p>Cytokinin is central to coordinating plant adaptation to environmental stresses. Here, we first demonstrated the involvement of cytokinin in Arabidopsis responses to arsenite [As(III)] stress. As(III) treatment reduced cytokinin contents, while cytokinin treatment repressed further primary root growth in Arabidopsis plants under As(III) stress. Subsequently, we revealed that the cytokinin signaling members ARR1 and ARR12, the type-B ARABIDOPSIS RESPONSE REGULATORs, participate in cytokinin signaling-mediated As(III) responses in plants as negative regulators. A comprehensive transcriptome analysis of the arr1 and arr12 single and arr1,12 double mutants was then performed to decipher the cytokinin signaling-mediated mechanisms underlying plant As(III) stress adaptation. Results revealed important roles for ARR1 and ARR12 in ion transport, nutrient responses, and secondary metabolite accumulation. Furthermore, using hierarchical clustering and regulatory network analyses, we identified two NODULIN 26-LIKE INTRINSIC PROTEIN (NIP)-encoding genes, NIP1;1 and NIP6;1, potentially involved in ARR1/12-mediated As(III) uptake and transport in Arabidopsis. By analyzing various combinations of arr and nip mutants, including high-order triple and quadruple mutants, we demonstrated that ARR1 and ARR12 redundantly function as negative regulators of As(III) tolerance by acting upstream of NIP1;1 and NIP6;1 to modulate their function in arsenic accumulation. ChIP-qPCR, EMSA, and transient dual-LUC reporter assays revealed that ARR1 and ARR12 transcriptionally activate the expression of NIP1;1 and NIP6;1 by directly binding to their promoters and upregulating their expression, leading to increased arsenic accumulation under As(III) stress. These findings collectively provide insights into cytokinin signaling-mediated plant adaptation to excessive As(III), contributing to the development of crops with low arsenic accumulation.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RICE LONG GRAIN 3 delays dark-induced senescence by downregulating abscisic acid signaling and upregulating reactive oxygen species scavenging activity. RICE LONG GRAIN 3 通过下调脱落酸信号和上调活性氧清除活性,延缓黑暗诱导的衰老。
IF 6.2 1区 生物学
The Plant Journal Pub Date : 2024-10-08 DOI: 10.1111/tpj.17061
Chaemyeong Lim, Kiyoon Kang, Jisun Lim, Haeun Lee, Sung-Hwan Cho, Nam-Chon Paek
{"title":"RICE LONG GRAIN 3 delays dark-induced senescence by downregulating abscisic acid signaling and upregulating reactive oxygen species scavenging activity.","authors":"Chaemyeong Lim, Kiyoon Kang, Jisun Lim, Haeun Lee, Sung-Hwan Cho, Nam-Chon Paek","doi":"10.1111/tpj.17061","DOIUrl":"https://doi.org/10.1111/tpj.17061","url":null,"abstract":"<p><p>Leaf senescence is a complex developmental process influenced by abscisic acid (ABA) and reactive oxygen species (ROS), both of which increase during senescence. Understanding the regulatory mechanisms of leaf senescence can provide insights into enhancing crop yield and stress tolerance. In this study, we aimed to elucidate the role and mechanisms of rice (Oryza sativa) LONG GRAIN 3 (OsLG3), an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor, in orchestrating dark-induced leaf senescence. The transcript levels of OsLG3 gradually increased during dark-induced and natural senescence. Transgenic plants overexpressing OsLG3 exhibited delayed senescence, whereas CRISPR/Cas9-mediated oslg3 mutants exhibited accelerated leaf senescence. OsLG3 overexpression suppressed senescence-induced ABA signaling by downregulating OsABF4 (an ABA-signaling-related gene) and reduced ROS accumulation by enhancing catalase activity through upregulation of OsCATC. In vivo and in vitro binding assays demonstrated that OsLG3 downregulated OsABF4 and upregulated OsCATC by binding directly to their promoter regions. These results demonstrate the critical role of OsLG3 in fine-tuning leaf senescence progression by suppressing ABA-mediated signaling while simultaneously activating ROS-scavenging mechanisms. These findings suggest that OsLG3 could be targeted to enhance crop resilience and longevity.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland. 不同冷季降水总量对半干旱混合草地生态系统碳通量的直接影响和遗留影响
IF 6 1区 生物学
Plant, Cell & Environment Pub Date : 2024-10-07 DOI: 10.1111/pce.15175
Fangyue Zhang, Joel A Biederman, Nathan A Pierce, Daniel L Potts, Sasha C Reed, William K Smith
{"title":"Direct and Legacy Effects of Varying Cool-Season Precipitation Totals on Ecosystem Carbon Flux in a Semi-Arid Mixed Grassland.","authors":"Fangyue Zhang, Joel A Biederman, Nathan A Pierce, Daniel L Potts, Sasha C Reed, William K Smith","doi":"10.1111/pce.15175","DOIUrl":"https://doi.org/10.1111/pce.15175","url":null,"abstract":"<p><p>In the semi-arid grasslands of the southwest United States, annual precipitation is divided between warm-season (July-September) convective precipitation and cool-season (December-March) frontal storms. While evidence suggests shifts in precipitation seasonal distribution, there is a poor understanding of the ecosystem carbon flux responses to cool-season precipitation and the potential legacy effects on subsequent warm-season carbon fluxes. Results from a two-year experiment with three cool-season precipitation treatments (dry, received 5th percentile cool-season total precipitation; normal, 50th; wet, 95th) and constant warm-season precipitation illustrate the direct and legacy effects on carbon fluxes, but in opposing ways. In wet cool-season plots, gross primary productivity (GPP) and ecosystem respiration (ER) were 103% and 127% higher than in normal cool-season plots. In dry cool-season plots, GPP and ER were 47% and 85% lower compared to normal cool-season plots. Unexpectedly, we found a positive legacy effect of the dry cool-season treatment on warm-season carbon flux, resulting in a significant increase in both GPP and ER in the subsequent warm season, compared to normal cool-season plots. Our results reveal positive legacy effects of cool-season drought on warm-season carbon fluxes and highlight the importance of the relatively under-studied cool-growing season and its direct/indirect impact on the ecosystem carbon budget.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信