工程技术最新文献

筛选
英文 中文
Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer.
IF 4.5 3区 生物学
Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2025-12-01 Epub Date: 2024-12-19 DOI: 10.1080/21691401.2024.2440415
Tianze Zhang, Yuqing Chen, Zhiping Xiang
{"title":"Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer.","authors":"Tianze Zhang, Yuqing Chen, Zhiping Xiang","doi":"10.1080/21691401.2024.2440415","DOIUrl":"https://doi.org/10.1080/21691401.2024.2440415","url":null,"abstract":"<p><p>Gastric cancer remains one of the deadliest cancers globally due to delayed detection and limited treatment options, underscoring the critical need for innovative prognostic methods. Disulfidptosis, a recently discovered programmed cell death triggered by disulphide stress, presents a fresh avenue for therapeutic exploration. This research examines disulfidptosis-related long noncoding RNAs (DRLs) in gastric cancer, with the goal of leveraging these lncRNAs as potential markers to enhance patient outcomes and treatment approaches. Comprehensive genomic and clinical data from stomach adenocarcinoma (STAD) were obtained from The Cancer Genome Atlas (TCGA). Employing least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model was devised incorporating five key DRLs to forecast survival rates. The effectiveness of this model was validated using Kaplan-Meier survival plots, receiver operating characteristic (ROC) curves, and extensive functional enrichment studies. The importance of select lncRNAs and the expression variability of genes tied to disulfidptosis were validated via quantitative real-time PCR (qRT-PCR) and Western blot tests, establishing a solid foundation for their prognostic utility. Analyses of functional enrichment and tumour mutation burden highlighted the biological importance of these DRLs, connecting them to critical cancer pathways and immune responses. These discoveries broaden our comprehension of the molecular framework of gastric cancer and bolster the development of tailored treatment plans, highlighting the substantial role of DRLs in clinical prognosis and therapeutic intervention.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"1-13"},"PeriodicalIF":4.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity" [Biomaterials 314 (2025) 122908].
IF 12.8 1区 医学
Biomaterials Pub Date : 2025-04-01 Epub Date: 2024-11-28 DOI: 10.1016/j.biomaterials.2024.122973
Sumanta Ghosh, Mengjia Zheng, Jiahui He, Yefeng Wu, Yaming Zhang, Weiping Wang, Jie Shen, Kelvin W K Yeung, Prasanna Neelakantan, Chenjie Xu, Wei Qiao
{"title":"Corrigendum to \"Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity\" [Biomaterials 314 (2025) 122908].","authors":"Sumanta Ghosh, Mengjia Zheng, Jiahui He, Yefeng Wu, Yaming Zhang, Weiping Wang, Jie Shen, Kelvin W K Yeung, Prasanna Neelakantan, Chenjie Xu, Wei Qiao","doi":"10.1016/j.biomaterials.2024.122973","DOIUrl":"10.1016/j.biomaterials.2024.122973","url":null,"abstract":"","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":" ","pages":"122973"},"PeriodicalIF":12.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Poly(β-amino ester) polymer library with monomer variation for mRNA delivery" [Biomaterials 314 (2025) 122896]. 用于递送 mRNA 的具有单体变化的聚(β-氨基酯)聚合物库"[《生物材料》314 (2025) 122896]的更正。
IF 12.8 1区 医学
Biomaterials Pub Date : 2025-04-01 Epub Date: 2024-11-22 DOI: 10.1016/j.biomaterials.2024.122966
Hong Lyun Kim, Gurusamy Saravanakumar, Seowon Lee, Subin Jang, Seonwoo Kang, Mihyeon Park, Sivasangu Sobha, So-Hee Park, Soo-Min Kim, Jung-Ah Lee, Eunkyung Shin, You-Jin Kim, Hye-Sook Jeong, Dokeun Kim, Won Jong Kim
{"title":"Corrigendum to \"Poly(β-amino ester) polymer library with monomer variation for mRNA delivery\" [Biomaterials 314 (2025) 122896].","authors":"Hong Lyun Kim, Gurusamy Saravanakumar, Seowon Lee, Subin Jang, Seonwoo Kang, Mihyeon Park, Sivasangu Sobha, So-Hee Park, Soo-Min Kim, Jung-Ah Lee, Eunkyung Shin, You-Jin Kim, Hye-Sook Jeong, Dokeun Kim, Won Jong Kim","doi":"10.1016/j.biomaterials.2024.122966","DOIUrl":"10.1016/j.biomaterials.2024.122966","url":null,"abstract":"","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":" ","pages":"122966"},"PeriodicalIF":12.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to 'Enhancing CAR-T cell therapy against solid tumor by drug-free triboelectric immunotherapy' [Biomaterials 314 (2025) 122871]. 通过无药三电免疫疗法增强针对实体瘤的 CAR-T 细胞疗法"[《生物材料》314 (2025) 122871] 勘误。
IF 12.8 1区 医学
Biomaterials Pub Date : 2025-04-01 Epub Date: 2024-10-31 DOI: 10.1016/j.biomaterials.2024.122927
Haimei Li, Zichen Wang, Yulin Hu, Guangqin He, Liang Huang, Yi Liu, Zhong Lin Wang, Peng Jiang
{"title":"Corrigendum to 'Enhancing CAR-T cell therapy against solid tumor by drug-free triboelectric immunotherapy' [Biomaterials 314 (2025) 122871].","authors":"Haimei Li, Zichen Wang, Yulin Hu, Guangqin He, Liang Huang, Yi Liu, Zhong Lin Wang, Peng Jiang","doi":"10.1016/j.biomaterials.2024.122927","DOIUrl":"10.1016/j.biomaterials.2024.122927","url":null,"abstract":"","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":" ","pages":"122927"},"PeriodicalIF":12.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy" [Biomater. 275 (2021) 120959]. 双步辐照策略连续破坏单线态氧响应性聚合物胶束并促进光动力癌症疗法》[Biomater. 275 (2021) 120959]的更正。
IF 12.8 1区 医学
Biomaterials Pub Date : 2025-04-01 Epub Date: 2024-11-12 DOI: 10.1016/j.biomaterials.2024.122952
Kai Deng, Hui Yu, Jia-Mi Li, Kun-Heng Li, Hong-Yang Zhao, Min Ke, Shi-Wen Huang
{"title":"Corrigendum to \"Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy\" [Biomater. 275 (2021) 120959].","authors":"Kai Deng, Hui Yu, Jia-Mi Li, Kun-Heng Li, Hong-Yang Zhao, Min Ke, Shi-Wen Huang","doi":"10.1016/j.biomaterials.2024.122952","DOIUrl":"10.1016/j.biomaterials.2024.122952","url":null,"abstract":"","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":" ","pages":"122952"},"PeriodicalIF":12.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Viability and Functionality Assessment of a New Sutureless Endoluminal Microvascular Device: A Preliminary In Vivo Rabbit Study. 新型无缝线腔内微血管装置的机械活力和功能评估:兔子体内初步研究。
IF 0.8 4区 医学
Journal of Medical Devices-Transactions of the Asme Pub Date : 2025-03-01 Epub Date: 2024-10-22 DOI: 10.1115/1.4066555
Jordi Descarrega, Joan Fontdevila, Erica Segura, Héctor Oyonate, German Bellemi, Brittany Taylor
{"title":"Mechanical Viability and Functionality Assessment of a New Sutureless Endoluminal Microvascular Device: A Preliminary In Vivo Rabbit Study.","authors":"Jordi Descarrega, Joan Fontdevila, Erica Segura, Héctor Oyonate, German Bellemi, Brittany Taylor","doi":"10.1115/1.4066555","DOIUrl":"10.1115/1.4066555","url":null,"abstract":"<p><p>Our group has developed a new nitinol endoluminal self-expandable device for microvascular anastomosis. It attaches to each vessel ending with opposite directed microspikes and reaches complete expansion at body temperature, using the nitinol shape memory capacity. The main purpose of this first in vivo trial is to evaluate the mechanical viability of the device and its immediate and early functionality. A recuperation study with seven New Zealand White rabbits was designed. A 1.96 mm outer diameter prototype of the new device was placed on the right femoral artery of each rabbit. Each anastomosis was reassessed on the seventh postoperative day to reevaluate the device function. The average anastomosis time with the new device was 18 min and 45 seg (±0.3 seg). It could be easily placed in all the cases with an average of 1.14 (1) complementary stitches needed to achieve a sealed anastomosis. Patency test was positive for all the cases on the immediate assessment. On the 1 week revision surgery, patency test was negative for the seven rabbits due to blood clot formation inside the device. The new device that we have developed is simple to use and shows correct immediate functionality. On the early assessment, the presence of a foreign body in the endoluminal space caused blood clot formation. We speculate that a heparin eluting version of the device could avoid thrombosis formation. We consider that the results obtained can be valuable for other endoluminal sutureless devices.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"19 1","pages":"015002"},"PeriodicalIF":0.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Implementation of a Computer-Controlled Hybrid Oscillatory Ventilator. 计算机控制的混合振荡通风机的设计与实施。
IF 0.8 4区 医学
Journal of Medical Devices-Transactions of the Asme Pub Date : 2025-03-01 Epub Date: 2024-10-22 DOI: 10.1115/1.4066679
Andrea F Cruz, Jacob Herrmann, Bakir Hajdarevic, Monica L Hawley, Donald Fox, Jason H T Bates, David W Kaczka
{"title":"Design and Implementation of a Computer-Controlled Hybrid Oscillatory Ventilator.","authors":"Andrea F Cruz, Jacob Herrmann, Bakir Hajdarevic, Monica L Hawley, Donald Fox, Jason H T Bates, David W Kaczka","doi":"10.1115/1.4066679","DOIUrl":"10.1115/1.4066679","url":null,"abstract":"<p><p>During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance. The device employs an iterative spectral feedback controller to generate a wide range of oscillatory waveforms. The performance of the device meets that of commercial mechanical ventilators in volume-controlled mode. Oscillatory modes of ventilation also meet design specifications in a mechanical test lung, over frequencies from 4 to 20 Hz and mean airway pressure from 5 to 30 cmH<sub>2</sub>O. In proof-of-concept experiments, the oscillatory ventilator maintained adequate gas exchange in a porcine model of acute lung injury, using combinations of conventional and oscillatory ventilation modalities. In summary, our novel device is capable of generating a wide range of conventional and oscillatory ventilation waveforms with potential to enhance gas exchange, while simultaneously providing less injurious ventilation.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"19 1","pages":"011001"},"PeriodicalIF":0.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial for Special Issue on Foundation Models for Medical Image Analysis. 医学图像分析基础模型》特刊编辑。
IF 10.7 1区 医学
Medical image analysis Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI: 10.1016/j.media.2024.103389
Xiaosong Wang, Dequan Wang, Xiaoxiao Li, Jens Rittscher, Dimitris Metaxas, Shaoting Zhang
{"title":"Editorial for Special Issue on Foundation Models for Medical Image Analysis.","authors":"Xiaosong Wang, Dequan Wang, Xiaoxiao Li, Jens Rittscher, Dimitris Metaxas, Shaoting Zhang","doi":"10.1016/j.media.2024.103389","DOIUrl":"10.1016/j.media.2024.103389","url":null,"abstract":"","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":" ","pages":"103389"},"PeriodicalIF":10.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food contamination from packaging material with special focus on the Bisphenol-A. 包装材料对食品的污染,特别关注双酚 A。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-06-05 DOI: 10.1080/07388551.2024.2344571
Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu
{"title":"Food contamination from packaging material with special focus on the Bisphenol-A.","authors":"Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu","doi":"10.1080/07388551.2024.2344571","DOIUrl":"10.1080/07388551.2024.2344571","url":null,"abstract":"<p><p>Additives, such as bisphenol A (BPA) that are added to packaging material to enhance functionality may migrate into food products creating a concern for food safety. BPA has been linked to various chronic diseases, such as: diabetes, obesity, prostate cancer, impaired thyroid function, and several other metabolic disorders. To safeguard consumers, BPA migration limits have been defined by regulatory bodies. However, it is important to address the underlying factors and mechanisms so that they can be optimized in order to minimize BPA migration. In this review, we determine the relative importance of the factors, i.e. temperature, contact time, pH, food composition, storage time and temperature, package type, cleaning, and aging, and packaging damage that promote BPA migration in foods. Packaging material seems to be the key source of BPA and the temperature (applied during food production, storage, can sterilization and cleaning processes) was the critical driver influencing BPA migration.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"69-79"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental impact of microplastics and potential health hazards. 微塑料对环境的影响和潜在的健康危害。
IF 8.1 2区 工程技术
Critical Reviews in Biotechnology Pub Date : 2025-02-01 Epub Date: 2024-06-24 DOI: 10.1080/07388551.2024.2344572
K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan
{"title":"Environmental impact of microplastics and potential health hazards.","authors":"K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan","doi":"10.1080/07388551.2024.2344572","DOIUrl":"10.1080/07388551.2024.2344572","url":null,"abstract":"<p><p>Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"97-127"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信