Alexandra Baumgart , Matthew X. Yao , Guillaume Blanquart
{"title":"Assessment of flamelet/progress variable methods for supersonic combustion","authors":"Alexandra Baumgart , Matthew X. Yao , Guillaume Blanquart","doi":"10.1016/j.proci.2025.105798","DOIUrl":"10.1016/j.proci.2025.105798","url":null,"abstract":"<div><div>Tabulated chemistry models, including the flamelet/progress variable approach, have been successfully used for a variety of turbulent flame simulations. The progress variable describes the progress of reactions in a system and parameterizes a lookup table of thermochemical variables. This approach reduces the cost of simulations, transporting only one scalar (progress variable) instead of the many species mass fractions required for detailed chemistry. Originally developed for low Mach number flame simulations, recent works have focused on extensions of this approach to compressible flames, supersonic combustion, and detonations, with applications such as scramjet combustors and rotating detonation engines. Unlike low Mach simulations, compressible flow simulations require solving the energy transport equation, which is coupled to the equation of state. This leads to additional modeling challenges regarding the thermodynamics and its impact on the chemistry. The validity of modeling assumptions, for example the relationship between energy and temperature, also varies with the combustion regime. The present work provides a detailed assessment of the existing strategies for chemistry tabulation for compressible/supersonic combustion, including detonations. A priori analysis indicates that approximations which are reasonable for weakly compressible flames may break down for shock-induced combustion. The analysis identifies specific assumptions and approximations that do not hold for detonations, emphasizing that care must be taken when applying tabulated chemistry models outside their intended combustion regimes.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105798"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144852906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pujan Biswas, Vivek Boddapati, Andrew R. Klingberg, Alka Panda, Hai Wang, Ronald K. Hanson
{"title":"IR-HyChem: Towards modeling the high-T combustion behavior of aviation fuels using infrared spectra","authors":"Pujan Biswas, Vivek Boddapati, Andrew R. Klingberg, Alka Panda, Hai Wang, Ronald K. Hanson","doi":"10.1016/j.proci.2025.105792","DOIUrl":"10.1016/j.proci.2025.105792","url":null,"abstract":"<div><div>A Fourier transform infrared (FTIR) spectra-based approach, namely IR-HyChem, was developed to model the combustion behavior of jet and rocket fuels. Earlier shock-tube experiments employed laser absorption spectroscopy (LAS) to measure the yields of key stable intermediates: CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and >C<sub>2</sub> alkenes such as C<sub>3</sub>H<sub>6</sub>, 1-C<sub>4</sub>H<sub>8</sub> and <em>i</em>-C<sub>4</sub>H<sub>8</sub>, during the pyrolysis of neat hydrocarbons across several molecular classes (<em>n</em>-alkanes, lightly branched alkanes and highly branched alkanes). These measurements revealed empirical relations of molecular structure to the yields of these intermediates. The relationships provided important insights into fuel reactivity under high-temperature, combustor-relevant conditions. The IR-HyChem methodology establishes quantitative correlations between spectral features and the yields of these pyrolysis intermediates. Using this framework, IR-HyChem models were demonstrated for two jet fuels (JP-8 and F-24) and a rocket fuel (RP-1), by constraining a subset of stoichiometric parameters in the HyChem lumped reactions, resulting in partially constrained IR-HyChem models. These models were evaluated against ignition delay times (IDTs) measured behind reflected shock waves at elevated pressures, demonstrating strong agreement with experimental data. A Monte Carlo uncertainty analysis revealed that imposing FTIR-based constraints reduced variance in IDT predictions compared to unconstrained models. Furthermore, sensitivity analysis indicated that additional IR spectra-based correlations could improve the accuracy of the IR-HyChem models. Overall, this work demonstrates the utility of FTIR spectra and their potential use as a low-volume tool for developing predictive chemistry models for the combustion of real, multi-component fuels.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105792"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144772152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy P. Day, Khaled Mosharraf Mukut, Luke Klacik, Ryan O’Donnell, James Wasilewski, Somesh P. Roy
{"title":"SAGE: A machine learning model for primary particle segmentation in TEM images of soot aggregates","authors":"Timothy P. Day, Khaled Mosharraf Mukut, Luke Klacik, Ryan O’Donnell, James Wasilewski, Somesh P. Roy","doi":"10.1016/j.proci.2025.105821","DOIUrl":"10.1016/j.proci.2025.105821","url":null,"abstract":"<div><div>Accurate characterization of the morphology of soot is essential for our understanding and better modeling of the physical and chemical properties of soot. The morphological characteristics of soot are traditionally explored experimentally via Transmission Electron Microscopy (TEM), usually by investigating the images via manual segmentation, which is highly labor intensive. To improve this process, a novel model for the automatic segmentation of primary particles in TEM images of soot is presented in this work. The goal of the model is to identify and isolate each primary particle from a TEM image of a soot aggregate. The model, titled Soot Aggregate Geometry Extraction (SAGE) employs a two-stage training process using a convolutional neural network: an initial training on synthetically-generated TEM images followed by a refinement training by using manually segmented real TEM images. The model was tested against a dataset of real TEM images that included images from sources different from the training data (i.e., different instruments and different researchers). When tested against this real TEM image dataset of soot, SAGE shows good performance with an F<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> score of 67.7%, indicating its ability to correctly identify primary particles while achieving a balanced trade off between missing true particles and detecting false ones. SAGE is able to detect more primary particles with better shape and size alignments with the ground truth data than traditional methods such as circular Hough transform or Euclidean distance mapping methods, leading to a much higher mean Intersection over Union score of 62.2%. Unlike most existing approaches that produce circular segmentations and require image-by-image tuning, SAGE effectively captures irregular particle boundaries without additional adjustments. The particle size distribution obtained from SAGE matches well with the ground truth. The median errors of predictions obtained from SAGE fall below 5% and 1%, respectively, for radius of gyration and fractal dimension of particles.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105821"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145044042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the use of ammonia- and methanol-diesel blends in reactivity controlled compression ignition mode for marine engines","authors":"Aneesh Vijay Kale, Harsh Darshan Sapra, Saurabh Kumar Gupta, Reed Hanson, Sage Kokjohn","doi":"10.1016/j.proci.2025.105813","DOIUrl":"10.1016/j.proci.2025.105813","url":null,"abstract":"<div><div>There is a need to adopt low-carbon fuels such as ammonia and methanol to decarbonize the marine fleet. The higher autoignition temperatures of ammonia and methanol make it challenging to use these fuels in conventional diesel engines. Previous studies have demonstrated that operating a conventional diesel engine in the Reactivity Controlled Compression Ignition (RCCI) mode has the potential to utilize low-carbon fuels without compromising engine performance or emissions. This study comprehensively compares the RCCI engine characteristics when methanol-diesel and ammonia-diesel are used as fuels. Experiments were conducted in a 6.7 L Cummins ISB engine for the methanol-diesel RCCI. A 3D CFD numerical engine model was developed in the Converge software and validated with experimental data. The ammonia-diesel RCCI was studied by replacing the methanol-diesel blend with the ammonia-diesel blend for the same fuel energy. The premixed energy ratio was varied from 5 % to 95 % for the constant fuel energy, keeping all other engine operating parameters the same. Best cases for RCCI combustion were chosen based on maximum gross indicated thermal efficiency and minimum greenhouse gas emissions. The maximum gross indicated thermal efficiency for the methanol-diesel RCCI (obtained by substituting 83 % diesel mass with methanol) was 20 % higher than that of ammonia-diesel RCCI (obtained by substituting 65 % diesel mass with ammonia) and 13 % higher than that of conventional diesel combustion. Overall, this study provides directions on using methanol and ammonia as sustainable fuels for marine engines, selecting the optimal premixed energy ratios to achieve efficient RCCI combustion.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105813"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144886774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuzhi Zhang , Vansh Sharma , Venkat Raman , Tristan T. Shahin , Alexander J. Hodge , Rohan M. Gejji , Robert P. Lucht , Carson D. Slabaugh
{"title":"Three-dimensional analysis of hydrogen fuel effects in multi-tube combustor","authors":"Shuzhi Zhang , Vansh Sharma , Venkat Raman , Tristan T. Shahin , Alexander J. Hodge , Rohan M. Gejji , Robert P. Lucht , Carson D. Slabaugh","doi":"10.1016/j.proci.2025.105790","DOIUrl":"10.1016/j.proci.2025.105790","url":null,"abstract":"<div><div>Flame characteristics, including mixing and stabilization in a multi-tube micromixer (MTM) combustor operating with hydrogen fuel are analyzed using high-fidelity simulations. In this flow configuration, a bundle of tubes issue fuel-air mixture into a combustion chamber, leading to multiple flame fronts, which may interact in an unsteady manner. Highly-resolved simulations enabled by adaptive mesh refinement with detailed kinetics are used. The results are first validated against experimental data for both a methane–hydrogen blend and pure hydrogen fuel, showing very good agreement with experimental image data. A detailed analysis of the hydrogen case reveals that global flame structures display distinct shapes across various flow streams. Upstream jet interactions induce mixture stratification along the tubes that is amplified with geometry-induced flow strain in the main chamber. These composition and fluid transients result in unsteady shear layer reactions of varying intensities that promote the recurrent formation of flame pockets and fuel filaments. Although transient flow effects are pronounced near the tube exit, an elongated primary reaction zone is observed for the central tube, the reaction zone being approximately 30% wider in the transverse direction where neighboring tubes are further apart. In addition, streamlines and velocity quiver plots highlight flow asymmetries that interact with heat release in primary flame reaction zones for near-wall tubes, while the central region maintains a predominantly uniform flow, resulting in securely anchored flames during adjacent flame oscillations. The study emphasizes that collective flame dynamics, rather than isolated local behavior, is key to achieving stable operation in such tubular bundled burners.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105790"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144780513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian P. Bjork , Mahmoud K. Ashour , Evangelos K. Stefanidis , Chiara Saggese , Scott W. Wagnon , Francesco Carbone
{"title":"The effect on soot and its gas precursors of doping ethylene with 2,2,4,6,6-pentamethyl-heptane in the nitrogen-fuel stream of a laminar non-premixed Planar Mixing Layer Flame (PMLF)","authors":"Christian P. Bjork , Mahmoud K. Ashour , Evangelos K. Stefanidis , Chiara Saggese , Scott W. Wagnon , Francesco Carbone","doi":"10.1016/j.proci.2025.105787","DOIUrl":"10.1016/j.proci.2025.105787","url":null,"abstract":"<div><div>Synthetic Aviation Turbine Fuels (SATFs) are promising for reducing soot emissions from the aviation sector and diversifying Jet Fuel (JF) sources. Accurately predicting the combustion and emissions behavior of SATFs (and other JFs) necessitates robust experimental databases to elucidate the chemistry of long-chain iso-paraffins, which can compose up to two-thirds of SATF blends and whose behavior is considered to be well-represented by that of iso-dodecane isomers. This study characterizes two laminar non-premixed Planar Mixing Layer Flames (PMLFs) with mild soot loads fueled by nitrogen-diluted ethylene, pure and doped with 2,2,4,6,6-pentamethyl-heptane, respectively. The two PMLFs have the same stoichiometric mixture fraction and total hydrocarbon mole fraction in the fuel stream (<em>X<sub>F,F</sub></em>=<em>X<sub>C2H4,F</sub></em>+<em>X<sub>C12H26,F</sub></em> = 0.260), resulting in nearly the same maximum temperature (<em>T<sub>max</sub></em>≈1800 K) and simple identification of the effects of doping. Importantly, any horizontal PMLF cross-section has a self-similar structure that can be modeled as an equivalent One-Dimensional Counterflow Flame (1D-CF) with vanishingly small strain rate (<em>a</em>). The cross-section at a Height Above the Burner (HAB) of 50 mm is characterized in terms of C<sub>0</sub>-C<sub>18</sub> gas species using capillary sampling followed by GC-MS analyses. Laser-Induced Emission Spectroscopy (LIES) quantifies the soot volume fraction (<em>f<sub>v</sub></em>) profiles at HAB=25 and 50 mm where Elastic Laser Light Scattering (E-LLS) is performed to determine the <em>a</em> of the equivalent 1D-CFs and the profile of the E-LLS equivalent diameter (<em>d<sub>6,3</sub></em>) of soot. The substitution of 1500 ppm of ethylene with 2,2,4,6,6-pentamethyl-heptane causes an increase of ≈1.5 in the concentrations of several polycyclic aromatic hydrocarbons and <em>f<sub>v</sub></em>. Concurrently, the measured <em>d<sub>6,</sub></em><sub>3</sub> doubles in the oxidizer stream, yet remains the same in the fuel stream, at HAB=50 mm. Instead, at HAB= 25 mm, the iso-dodecane doping does not affect the <em>d<sub>6,</sub></em><sub>3</sub> profile in either stream. The experimental results partially validate the chemical reactions and soot formation kinetic model developed at Lawrence Livermore National Laboratory and provide directions to further improve its predictions.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105787"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144841803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesus Caravaca-Vilchez, Malte Döntgen, Karl Alexander Heufer
{"title":"Acetaldehyde reactivity at engine-relevant conditions: An experimental and kinetic modeling study","authors":"Jesus Caravaca-Vilchez, Malte Döntgen, Karl Alexander Heufer","doi":"10.1016/j.proci.2025.105828","DOIUrl":"10.1016/j.proci.2025.105828","url":null,"abstract":"<div><div>Understanding the combustion chemistry of acetaldehyde, a carcinogenic by-product formed during the low-temperature oxidation of various hydrocarbons, is essential for reducing harmful emissions in engines. Previous acetaldehyde experimental works have largely focused on low-pressure conditions, with a few exceptions. Some studies report a clear negative temperature coefficient (NTC) behavior for acetaldehyde and highlight the need for further low-temperature, high-pressure experiments to fully characterize it. In this context, acetaldehyde ignition delay times were measured using a rapid compression machine and a shock tube over a wide range of conditions (580–1410 K, 10–40 bar, and equivalence ratios of 0.5–1.5), significantly extending the very limited IDT data available in the literature at 10 bar. At low temperatures, the most comprehensive kinetic models of acetaldehyde greatly underestimate its reactivity, even those that show reasonable performance for flow reactor species measurements from the literature in the same temperature regime. At high temperatures, model predictions were generally in better agreement with the measured data. To improve prediction accuracy, refinements were made within GalwayMech1.0 model, incorporating recently calculated thermochemistry from the literature and modified reaction rate parameters based on direct analogies and literature information. The resulting chemistry revealed that the acetyl peroxy radical is the primary driver of low-temperature reactivity at high pressures through a closed-loop fuel consumption pathway. Further adjustments in the peroxyl radicals chemistry, which is less relevant under low-pressure conditions, successfully separate first-stage and main ignition in the NTC region. At high temperatures, revised H-atom abstraction by <span><math><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></math></span> and O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> rates improved high-temperature predictions. Overall, the proposed model outperforms existing mechanisms over a wide range of conditions, but retains uncertainties in the formation of a few minor intermediates. This work highlights the importance of using high-pressure validation targets for comprehensive kinetic modeling and provides a solid foundation for future studies on acetaldehyde oxidation.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105828"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145104440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic behaviors of flame and molten insulation in electrical wire fire under applied electric field","authors":"Jeong Park , Chun Sang Yoo , Suk Ho Chung","doi":"10.1016/j.proci.2025.105862","DOIUrl":"10.1016/j.proci.2025.105862","url":null,"abstract":"<div><div>This study reviews recent findings on the dynamic behaviors of flame and molten insulation material observed in spreading flames over electrical wires under applied electric fields, which is a relevant scenario in electrical wire safety. The important roles of various unique dynamic behaviors in flame spreads are discussed, including fuel-vapor jet ejection from molten polyethylene (PE) surface, internal circulation of molten PE driven by Marangoni convection, dripping of molten PE, electrospray ejecting multiple small droplets from molten PE surface, and lateral dielectrophoresis by migrating a part of main molten PE toward the burnt wire side by forming a secondary molten PE or a liquid film of molten PE and sometimes leading to a formation of splitting flame. Additional behaviors such as vibration/rotation of molten PE due to a vertical dielectrophoresis, flame-leaning toward the burnt wire side caused by ionic wind, and magnetic field induced flame vortices near flame edges are also reviewed. The physical mechanisms of these dynamic behaviors are explained. Various regimes are identified depending on the occurrence of abovementioned phenomena. The dependence of flame spread rate on relevant physical parameters is reviewed, revealing a non-monotonic response to applied AC voltage and frequency, due to the intricate interactions among various dynamic phenomena. Phenomenological correlations are established for the FSR using key physical parameters including wire diameter, wire core diameter, applied voltage and frequency, and radial electric field gradient. To better understand the dynamic behaviors of molten insulation, the combustion of a droplet suspended on a wire was investigated, isolating the effects of solid-to-liquid phase change and the asymmetric distribution of molten PE between the burnt and unburned sides of the wire. The dynamic behaviors of such burning droplets under applied electric fields, along with their underlying mechanisms, are also reviewed and discussed.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105862"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145104448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Aravind , Ziyu Wang , Syed Mashruk , Deanna A. Lacoste , Agustin Valera-Medina
{"title":"Novel strategy for combustion enhancement of NH3-air mixture using gliding arc plasma","authors":"B. Aravind , Ziyu Wang , Syed Mashruk , Deanna A. Lacoste , Agustin Valera-Medina","doi":"10.1016/j.proci.2025.105848","DOIUrl":"10.1016/j.proci.2025.105848","url":null,"abstract":"<div><div>This study investigates the impact of gliding arc plasma (GAP) on the stability and emissions characteristics of a partially premixed ammonia (NH₃)-air swirling flames for wide ranges of global equivalence ratios (ϕ<sub>g</sub>). A novel dual-swirl GAP combustor, incorporating conical central electrode serving as a bluff body, is used to generate a rotating gliding arc plasma within the fuel lance. The plasma power is maintained below 1.4 % of the thermal power of the flame across all experimental conditions. This is the first study to apply GAP directly to the fuel side, facilitating premixing immediately after plasma interaction. The results reveal that plasma significantly enhances lean and rich blowout limits by 15–20 % and 30–35 %, respectively. This is mainly due to the continuous local ignition effect through heating and the generation of active species pools. Plasma actuation also results in a substantial reduction in NO and NO₂ emissions, decreasing by 40–80 % and 30–50 %, respectively, depending on ϕ<sub>g</sub> in the range of 0.76 to 1.05. Simultaneously, OH* and NH₂* intensities increase by 30–60 % and 70–80 %, respectively. This could indicate an increased NH₂ production favouring NO consumption reactions. A notable NH₃ slip occurs at ϕ<sub>g</sub> values exceeding 0.93 and 0.76, indicating incomplete combustion. Numerical results suggest that NO formation predominantly occurs via the HNO pathway, and that plasma conditions promote thermal De-NO<sub>x</sub> reactions, notably through NH₂ + NO → NNH + OH and NH₂ + NO → N₂ + H₂O reactions. This study provides critical insights into the potential of GAP technique for advancing NH₃ combustion technologies, offering promising applications for sustainable energy systems.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105848"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145104548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaohan Chu , Zhongkai Liu , Changyang Wang , Long Zhao , Bin Yang
{"title":"Experimental evidence for indene formation from o-methylphenyl radical + C2H2/C2H4 reactions","authors":"Zhaohan Chu , Zhongkai Liu , Changyang Wang , Long Zhao , Bin Yang","doi":"10.1016/j.proci.2025.105859","DOIUrl":"10.1016/j.proci.2025.105859","url":null,"abstract":"<div><div>An experimental study was conducted to investigate the weight growth routes from <em>o</em>-methylphenyl radical (<em>o</em>-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) to indene. <em>o</em>-Nitrosotoluene served as the precursor for <em>o</em>-methylphenyl radicals in this study. Co-pyrolysis of <em>o</em>-methylphenyl radical/C<sub>2</sub>H<sub>2</sub> and <em>o</em>-methylphenyl radical/C<sub>2</sub>H<sub>4</sub> was investigated utilizing the chemical microreactor and synchrotron vacuum ultraviolet photoionization mass spectrometry. Sampled mass-specific photoionization efficiency (PIE) curves were employed to identify the aromatic species, elucidating interactions between <em>o</em>-methylphenyl radicals and C<sub>2</sub> species. The species detected at <em>m/z</em> = 116 and 118, essential for understanding the reaction mechanism, were identified via matching photoionization cross-sections and adiabatic ionization energies with literature and theoretical values. Specifically, indene and its isomer <em>o</em>-methylphenylacetylene (<em>m/z</em> = 116) were determined in the reaction of <em>o</em>-methylphenyl radical with C<sub>2</sub>H<sub>2</sub>, while indene and <em>o</em>-methylstyrene (<em>m/z</em> = 118) were identified in the reaction of <em>o</em>-methylphenyl radical with C<sub>2</sub>H<sub>4</sub>. By combining the identified intermediate species with previous literature basis, the formation pathways for indene, originating from <em>o</em>-methylphenyl radical were discussed in both reaction systems, providing further insights for understanding the indene formation pathways.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105859"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145109371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}