Sewoon Kim, Yun Young Choi, Chang Min Park, Nosang V. Myung, David M. Cwiertny
{"title":"Polymer–iron oxide nanofiber composites for lead removal: performance improvements through organic acid stabilization of nanoparticles to promote surface segregation during electrospinning","authors":"Sewoon Kim, Yun Young Choi, Chang Min Park, Nosang V. Myung, David M. Cwiertny","doi":"10.1039/d4en00902a","DOIUrl":"https://doi.org/10.1039/d4en00902a","url":null,"abstract":"Herein we developed nanofiber composite membranes made of polyacrylonitrile (PAN) and iron oxide nanoparticles using a one-pot electrospinning synthesis method for application in point-of-use (POU) water treatment devices targeting both dissolved and particulate lead. With the goal of optimizing lead removal while minimizing raw material costs, we explored different commercially available iron oxides and incorporated simple organic acids (OAs) [<em>e.g.</em>, <em>ortho</em>- and tera-phthalic acid (PTA and TPTA) and ethylenediaminetetraacetic acid (EDTA)] based on our previous observation that sodium dodecyl sulfate (SDS) promotes enrichment of iron oxide at the electrospun nanofiber surface (<em>i.e.</em>, surface segregation). From sorption isotherm studies, we found that increasing iron oxide loading led to higher lead uptake (<em>e.g.</em>, PAN with 5 wt% iron oxide exhibited a lead removal capacity of 10 mg g<small><sup>−1</sup></small> of mat <em>versus</em> 5 mg g<small><sup>−1</sup></small> for 1 wt% iron oxide). PAN with 5 wt% iron oxide (3.3 mg lead removal per $) also resulted in better cost-normalized lead removal than PAN with 1 wt% iron oxide (1.0 mg lead removal per $). The integration of OAs further improved performance; for example, PAN with 5 wt% iron oxide and 3 wt% PTA achieved approximately 40 mg g<small><sup>−1</sup></small>. From nanofiber characterization <em>via</em> microscopic (SEM and TEM) and spectroscopic (XPS and FTIR) tools, OAs increase lead uptake through a combination of pathways: (1) stabilizing iron oxide particles and improving their dispersion in electrospinning sol gels; (2) promoting surface segregation that increases iron oxide concentration at the nanofiber surface; (3) functioning as a porogen that increases composite surface area; and (4) introducing some additional lead binding sites (<em>e.g.</em>, carboxylates) within the nanofiber. Simulating point-of-use application in a dead-end filtration system (effective filter area of 12.6 cm<small><sup>2</sup></small>, filter thickness of 120 μm, and flow rate of 20 mL min<small><sup>−1</sup></small>), we observed lead-free permeate with just 0.24 g of our optimal formulation when challenged with 4 L of 150 μg L<small><sup>−1</sup></small> soluble lead solution and 90% removal when this filter was challenged with a feed solution containing both dissolved and particulate lead (160 μg L<small><sup>−1</sup></small> total lead with 30% of particulate lead; >0.1 μm). Our study highlights the potential for OAs to enhance the performance of polymer–metal oxide nanofiber composites <em>via</em> a one-pot synthesis that will help to minimize production costs for high-performing materials.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"32 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Gomez-Kong, Miguel Tamayo Belda, Gerardo Pulido-Reyes, Carlos Edo, Irene Verdú, Francisco Leganes, Roberto Rosal, Miguel González-Pleiter, Francisca Fernandez-Piñas
{"title":"An Improved method to generate secondary nanoplastics and oligomers: Application in ecotoxicology","authors":"Silvia Gomez-Kong, Miguel Tamayo Belda, Gerardo Pulido-Reyes, Carlos Edo, Irene Verdú, Francisco Leganes, Roberto Rosal, Miguel González-Pleiter, Francisca Fernandez-Piñas","doi":"10.1039/d4en00866a","DOIUrl":"https://doi.org/10.1039/d4en00866a","url":null,"abstract":"Recent studies have highlighted the ecotoxicological effects of conventional primary nanoplastics (NPLs), however, the impacts of secondary NPLs and oligomers (Olig), especially those derived from biodegradable plastics, formed through fragmentation and natural degradation processes (e.g., photooxidation) remain underexplored. This gap is partly due to challenges in producing sufficient quantities for toxicity testing. An improved method to generate non-photooxidized (NP) and photooxidized (P) secondary NPLs and Olig from polybutylene adipate co-terephthalate (PBAT), a biodegradable plastic commonly used in agriculture mulching, that involves the mechanical breakdown of PBAT-microbeads with or without prior photooxidation is presented. PBAT was irradiated at ~ 9.34 kW m−2 (approximately 120 times the solar irradiance) during 96 h, irradiation that corresponds to ~ 16 months of average sunlight in the Iberian Peninsula (7.7 kWh m−2 day−1). The toxicological effects on Chlamydomonas reinhardtii, a model green microalga of primary producers in freshwater ecosystems was also assessed. The protocol yielded 0.199 mg of secondary NP-PBAT-NPLs and 10.275 mg of NP-PBAT-Olig per gram of PBAT-microbeads. PBAT-NPLs presented irregular spherical morphologies and hydrodynamic sizes ranging from 56.71 to 69.86 nm. HPLC and MALDI-TOF analysis identified linear and cyclic Olig, ranging from dimers to 19 repeated-units Olig. PBAT-NPLs and PBAT-Olig exhibited negative surface charges, suggesting colloidal stability in water. While PBAT-NPLs and PBAT-Olig did not inhibit algal growth in the short-term, they induced reactive oxygen species overproduction at the environmentally relevant concentrations of 0.01 mg/L, and caused membrane depolarization, impaired photosynthesis and lipid peroxidation at 10 mg/L. Non-photooxidized PBAT-NPLs exhibited the highest toxicity, followed by photooxidized PBAT-NPLs and both non-photooxidized and photooxidized PBAT-Olig. This study provides an efficient method for producing reference secondary NPLs and Olig and underscores the potential risks of PBAT towards primary producers in freshwater ecosystems.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"37 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanistic insights into different types of typical VOC adsorption on monolayer MoS2 via first-principles approaches","authors":"Weina Zhao, Jinlong Wang, Chang Shen, Bufan Xie, Guiying Li, Taicheng An","doi":"10.1039/d4en00953c","DOIUrl":"https://doi.org/10.1039/d4en00953c","url":null,"abstract":"Volatile organic compounds (VOCs) in the atmosphere emitted from industrial activities are stirring concern due to the serious threats to human health and global environmental over the recent years. Among the available VOC abatement options, adsorption technology has emerged as an appealing candidate for VOC removal from the contaminated air, yet little is known about the variation in adsorption trends and the underlying adsorption mechanism for different types of VOC species. Herein, the adsorption of eight typical types of VOCs (C ≤ 8 atoms) emitted from the petrochemical industry was investigated by density functional theory (DFT) calculations at the electronic and atomic level on monolayer MoS2, including alkanes, alkenes, alkynes, alcohols, aldehydes, carboxylic acids, ketones and aromatic hydrocarbons. Our research aims to investigate the adsorption behaviors of various types of VOCs, including those with different carbon chain lengths within the same VOC category. It shows that the unique structural properties of MoS2 monolayer not only provide excellent adsorption capabilities but also exhibited distinct responses to the eight aforementioned VOC types. The adsorption energy of VOCs exhibits a distinct hierarchical order: alkanes < aromatic hydrocarbons < alkynes < aldehydes < ketones < alkene < alcohols< carboxylic acids, with the adsorption energy spanning from -0.25 to -1.19 eV. For different VOC adsorption systems, the distance between the rightmost peak of the density of states (DOS) and the Fermi level ranges from -1.42 to -0.17 eV. Additionally, for a given type of VOCs, it was observed that an increase in the carbon chain length correlates with an increase in adsorption energy, while a predictive fitting curve was derived for the adsorption energy of VOCs, expressed as Eads/eV = -0.13X - 0.12 with X being the number of carbon atoms. Through a comprehensive analysis involving charge density differences, DOS and Mulliken charge analysis, we elucidated the underlying mechanisms that correlate adsorption energy with both the specific VOC species and the carbon chain length. Our research highlights the potential and feasibility of MoS2 as a promising candidate for selective VOC adsorption, while also providing a theoretical framework for the development of high-performance VOC adsorbents.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"234 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel route to synthesize Bi/β-Bi2O3@Carbon: Mechanism and performance for efficient degradation of organic pollutants","authors":"Xia Zhang, Yifang Zhang, Xitong Yang, Jiaxin Han, Guifen Zhu, Jing Fan","doi":"10.1039/d4en00973h","DOIUrl":"https://doi.org/10.1039/d4en00973h","url":null,"abstract":"Metastable β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small> exhibits high catalytic performance due to its suitable band gap, greater dielectric permittivity and conductivity. However, the difficultly in preparing β-Bi<small><sub>2</sub></small>O<small><sub>3 </sub></small>and β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small> based materials is still a problem to be overcome. In this work, porous Bi/β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>@Carbon photocatalysts were prepared for the first time by using atmosphere switching strategy during the post-cooling of metal-organic framework (MOF) pyrolysis. The crystal phase structure and composition of Bi/β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>@Carbon could be easily adjusted by simply switching cooling atmosphere from N<small><sub>2</sub></small> to air when cooled to different temperatures. The photocatalytic activities of the material were evaluated by degradation of emerging pollutant Fluorescent whitening agents (FWA) 351 under simulated solar light irradiation. It was observed that 10 mg/L FWA 351 was completely degraded within 4 h using the optimal photocatalyst. The mineralization efficiency reached 60% in 6 h. Active species trapping experiments confirmed that hole oxidation was responsible for the degradation of FWA 351. The increased activity was due to the improved visible light utilization resulted from reduced bandgap of Bi/β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>@Carbon and surface plasmon resonance effect of bismuth metal, as well as the facilitated interfacial electron migration and charge carrier separation through multi-interface transfer paths. The proposed strategy provides new ideas for designing and synthesizing functional materials. The efficient degradation and mineralization of FWA 351 by Bi/β-Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>@Carbon also confirmed its potential for future application in wastewater treatment.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"19 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guru Karthikeyan Thirunavukkarasu, Monika Motlochová, Dmytro Bavol, Anna Vykydalová, Jaroslav Kupcik, Michal Navrátil, Kaplan Kirakci, Eva Pližingrová, Dana Dvoranová, Jan Subrt
{"title":"Insights in Photocatalytic/Fenton-based Degradation of Microplastics using Iron-Modified Titanium Dioxide Aerogel Powders","authors":"Guru Karthikeyan Thirunavukkarasu, Monika Motlochová, Dmytro Bavol, Anna Vykydalová, Jaroslav Kupcik, Michal Navrátil, Kaplan Kirakci, Eva Pližingrová, Dana Dvoranová, Jan Subrt","doi":"10.1039/d4en00818a","DOIUrl":"https://doi.org/10.1039/d4en00818a","url":null,"abstract":"Microplastic (MPs) pollution has become a serious environmental problem in the current decade. Unfortunately, wastewater treatment plants are not favorable for treating the MPs. Therefore, it is necessary to develop methodologies to treat the MPs in water efficiently. Photocatalytic (PC) and photo-Fenton (PF) processes are among the promising treatment methodologies that utilize reactive oxygen species (ROS) to degrade the MPs. In this study, TiO2 aerogel powders (TiAP) were prepared by lyophilization and subsequent annealing of peroxo-titanic acid gels, followed by modification with Fe at the surface for the PC/PF-based degradation of MPs. Fe-modification on TiAP boosts the PC activity and activates the PF-based process in the presence of H2O2. The degradation of polystyrene (PS) MPs was evaluated using an attenuated total reflection infrared (ATR-IR) spectroscopy, total organic carbon (TOC) analyzer, thermogravimetric analyzer coupled with differential scanning calorimetry and mass spectrometer (TGA-DSC/MS), nuclear magnetic resonance (NMR) spectroscopy, and high-performance liquid chromatography with a high-resolution mass spectrometer (HPLC-HRMS) techniques. Photo-induced degradation of the PS MPs was evaluated by monitoring the changes in the carbonyl/peroxyl index (CI/PI) recorded by ATR-IR spectroscopy and the mass loss measured by TGA-DSC/MS techniques. Interestingly, the samples with higher CI value changes affected the total mass residue, while samples with lower changes in the CI value did not alter the total mass residue after the photo-induced treatment. Further, NMR spectra confirmed the formation of new peaks due to the oxidative degradation of PS MPs, especially between 0.8 and 1.3 ppm. Additionally, by-products formed after the photo-induced treatment process analyzed by the HPLC-HRMS technique indicate the degradation of PS MPs. The indirect technique of electron paramagnetic resonance (EPR) spectroscopy revealed the ROS contributing to the oxidation of PS MPs during the PC and PF treatment process using Fe-modified TiAP. This study's findings have the potential to significantly influence future research and environmental policies by providing better insights into preparing efficient nanostructures for photo-induced degradation of MPs.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"48 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aurélie Rosset, Isabelle Michaud-Soret, Isabelle Capron, Hugo Voisin, Gregory Brochard, Virginie Bergé, Anass Benayad, Arnaud Guiot, Simon Clavaguera, Sébastien Artous
{"title":"Towards the development of safer by design mineral photocatalytic paint: influence of the TiO2 modifications on particle release","authors":"Aurélie Rosset, Isabelle Michaud-Soret, Isabelle Capron, Hugo Voisin, Gregory Brochard, Virginie Bergé, Anass Benayad, Arnaud Guiot, Simon Clavaguera, Sébastien Artous","doi":"10.1039/d4en00681j","DOIUrl":"https://doi.org/10.1039/d4en00681j","url":null,"abstract":"The development of safe nanomaterials has become a significant concern in various industry sectors using advanced materials. While there is variability in the definitions of Safe(r) by Design (SbD), the general concept is to minimise environmental, health and safety concerns implementing appropriate measures at an early stage of product design to control exposure and hazard, thus reducing risks. The SbD product strategy applied in this paper refers to the mitigation of exposure by the identification of release scenarios during the use and the end of life of the nano-enabled products (NEPs) that include engineered nanomaterials (ENMs). This strategy was applied to the development of a photocatalytic mineral paint containing TiO2 engineered nanomaterial. This ENM was then incorporated into a mineral matrix-based paint for photocatalytic application. The different paint formulations were applied to standardised substrates and artificially weathered in an accelerated weathering chamber with controlled parameters. Mechanical solicitation that simulate end of life (EoL) of the paint, through abrasion tests, were performed to assess the potential emission of airborne particles that could lead to human or environmental exposure. The release evaluation confirms that paints with TiO2 nanoparticles without SbD coating release more nanometric particles due to strong matrix degradation. The TiO2 nanoparticles coated with PEG or grafted onto CNC does not completely prevent the degradation of the paint surface during ageing. However, this degradation does not necessarily lead to an increase in aerosol emission. The coating degradation during accelerated ageing limits the degradation of the paint matrix, preventing the release of unbound TiO2 nanoparticles. Understanding the mechanisms of release and how they are influenced by the ENMs, the matrix material and the process characteristics is crucial for the exposure and risk assessment approach in occupational settings involving engineered nanomaterials. Moreover, establishing release rates makes it possible to increase the reliability of SbD e-infrastructure for performance testing and the implementation of Safe-by-Design approaches in the nanotechnology supply chain.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"25 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the in vivo biotoxicity of green-biofabricated Graphene Oxide-Microplastic hybrid mediated by proximal intrinsic atomic interaction","authors":"Adrija Sinha, Sudakshya S. Lenka, Abha Gupta, Dibyangshee Singh, Anmol Choudhury, Shaikh Sheeran Naser, Aishee Ghosh, Faizan Zarreen Simnani, Aditya Nandi, Suresh K Verma, Mrutyunjay Suar, Richa Mishra","doi":"10.1039/d4en00558a","DOIUrl":"https://doi.org/10.1039/d4en00558a","url":null,"abstract":"Graphene Oxide (GO) nano-sheets have emerged as a potent nanomaterial for a range of applications like antibacterial, antibiofilm. Besides, Microplastic are emerging as a chronic pollutant originated from the aggrandized usage of plastics, for possessing serious repercussions to the living beings and the environment. In concern of the issue, the individual toxicological impacts of GO nano-sheets and Polystyrene (PS) have received substantial research, the mechanistic details and toxicological effects of GO and PS as a hybrid is yet unknown. This study evaluates the in vivo biotoxicity of a lab mimic green synthesized GO@PS hybrid using embryonic zebrafish through experimental and computational approach. The physiochemical characterzation of the GO@PS verified the synthesis of a stable 1433.0 ± 268.0 nm sized GO@PS hybrid with a zeta potential of -47.3 ± 5.7 mV. Mechanistic analysis deduced the toxicological impact as a cause of induced apoptosis due to dysregulated oxidative stress lead by the hypoxic condition created due to blockage of chorion by attachment and accumulation of GO@PS. The study depicted the in vivo toxicity of GO, PS and GO@PS at cellular and molecular level to draw attention for taking measures in usage of GO and PS in terms of environmental and human health.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"52 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franklin Perez, Nesha Andoy, Uyan Tran Thao Hua, Keiko Yoshioka, Ruby May Arana Sullan
{"title":"Adaptive responses of Bacillus subtilis underlie differential nanoplastic toxicity with implications for root colonization","authors":"Franklin Perez, Nesha Andoy, Uyan Tran Thao Hua, Keiko Yoshioka, Ruby May Arana Sullan","doi":"10.1039/d4en00936c","DOIUrl":"https://doi.org/10.1039/d4en00936c","url":null,"abstract":"Positively charged nanoplastics are more toxic to microorganisms than their negatively charged counterparts, prompting further investigation into their antimicrobial properties. While many studies have shown that positively charged nanoplastics bind to bacteria, the fate of these nanoplastic coatings during bacterial growth remains unclear. Here, we report how amine-modified polystyrene nanoplastics (PS-NH<small><sub>2</sub></small>) reduce the viability of the plant growth-promoting rhizobacterium <em>Bacillus subtilis</em> and impair its ability to colonize plant roots. We found that upon exposure to PS-NH<small><sub>2</sub></small>, the nanoplastics form stable, multilayer coatings on the surface of the bacteria. In response,<em> B. subtilis</em> initiates processes to remove these nanoplastics—a behavior heavily influenced by their growth environment, whether at air or liquid interfaces. Consequently, we observed differential toxicity under varying growth conditions. Using tomato plant as a model system, we found that these nanoplastics severely inhibit bacterial attachment to plant roots. Our results demonstrate that nanoplastics can disrupt beneficial interactions between soil bacteria and plants, potentially compromising the effectiveness of microbial biofertilizers. Given that current practices introduce large amounts of plastics into agricultural areas, the adverse effects of nanoplastic pollution need to be mitigated","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"3 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manish Kumar, Sumit Choudhary, Satinder K. Sharma, Jaspreet Kaur Randhawa
{"title":"Piezoelectric nanogenerators with hybrid nanofibers: a dual approach for energy generation and wastewater treatment","authors":"Manish Kumar, Sumit Choudhary, Satinder K. Sharma, Jaspreet Kaur Randhawa","doi":"10.1039/d4en00568f","DOIUrl":"https://doi.org/10.1039/d4en00568f","url":null,"abstract":"The potential of piezoelectric polymer materials to harness minute-scale kinetic energy has garnered significant scientific interest. Their superior flexibility, ease of processing, and ability to conform to large areas and curved surfaces set them apart from inorganic materials. In this study, we developed a flexible, light-sensitive piezoelectric nano generator (PENG) using electrospun hybrid nanofibers composed of polyacrylonitrile (PAN) and α-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>. Through piezo response force microscopy (PFM), we characterized the piezoelectric properties of these nanofibers, noting a significant enhancement in the piezoelectric coefficient (<em>d</em><small><sub>33</sub></small>). We further investigated the application of three distinct nanostructured materials across three catalytic scenarios: piezoelectric, pyro catalytic, and photocatalytic. Our primary focus was on renewable energy generation and environmental remediation, particularly targeting the removal of organic pollutants. Our methods achieved an impressive removal efficiency of up to 95% for methylene blue (MB) dye. Additionally, we demonstrated the efficacy of integrating magnetic nanoparticles into electrospun nanofibers to improve the adsorption of heavy metals, specifically lead and copper contaminants. This research provides a comprehensive examination of nanomaterial-based energy harvesting systems, utilizing ferroelectric, sonocatalytic, and photocatalytic approaches.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"38 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raluca Svensson, Josep García Martínez, Mikael T Ekvall, Annette Krais, Katja Bernfur, Thom Leiding, Martin Lundqvist, Tommy Cedervall
{"title":"UV-B degradation affects nanoplastic toxicity and leads to release of small toxic substances","authors":"Raluca Svensson, Josep García Martínez, Mikael T Ekvall, Annette Krais, Katja Bernfur, Thom Leiding, Martin Lundqvist, Tommy Cedervall","doi":"10.1039/d4en00795f","DOIUrl":"https://doi.org/10.1039/d4en00795f","url":null,"abstract":"Fragmented micro- and nanoplastics are widespread pollutants with adverse effects on the environment. However, the breakdown process does not end with micro- and nanoplastics but is expected to continue until carbon dioxide has been formed. During this process the plastics will undergo chemical changes and small molecules may be released. We have broken down small amine-modified (53 nm) and carboxyl-modified (62 nm) polystyrene nanoparticles by UV-B irradiation. We see a decreasing size and an oxidation of the nanoparticles over time. Simultaneously, the toxicity to zooplankton Daphnia magna decreases. The UV-B irradiation releases small, dissolved molecules that are toxic to Daphnia magna. The dissolved molecules include aminated alkyls, styrene remnants and secondary circularization products. The study show that UV-B radiation can change the original toxicity of nanoplastics and release new toxic substances.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"10 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}