{"title":"Heavy metals enhance the deposition of clay colloids on silica surfaces via heterogeneous pathways","authors":"Yuanqi Fu, Heng Wang, Yuting Zhou, Lijuan Zeng, Feng Jiang, Xiaofei Li, Xiaohu Jin, Lijuan Zhang, Xiaoyun Yi, Zhi Dang","doi":"10.1039/d4en01122h","DOIUrl":null,"url":null,"abstract":"Clay colloids, abundant in aquatic environments, can affect the migration of heavy metals, but knowledge on their deposition and release on environmental solid surfaces is incomplete. Here, the deposition and release of montmorillonite colloids (MONTs) on the silica surface was investigated in the presence of heavy metal (HM) ions. Quartz crystal microbalance with dissipation (QCM-D) test showed that MONT deposition onto silica is affected by the positive charge of MONT edges, whereby a low pH and a high ionic strength are conducive to this deposition. Deposition mainly occurred in the face-plane mode and this was reversible. HMs promoted deposition more strongly than Na<small><sup>+</sup></small>, Mg<small><sup>2+</sup></small>, or Ca<small><sup>2+</sup></small>. The bonding stability between MONT edges and the silica surface was so strongly enhanced by HM bridging that the deposition was irreversible. Density functional theory simulation revealed that the MONT edge (010) was more easily attached to the silica surface than the MONT surface (001). The adsorption energy of MONT edges on the silica surface increase with HM bridging and increased with heavy metal electronegative values. This work revealed how HMs favor the deposition of clay colloids onto silica and highlights the importance of heavy metal properties in the retention, thereby contributing to a comprehensive understanding of the migration and fate of HMs related to clay colloids.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01122h","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Clay colloids, abundant in aquatic environments, can affect the migration of heavy metals, but knowledge on their deposition and release on environmental solid surfaces is incomplete. Here, the deposition and release of montmorillonite colloids (MONTs) on the silica surface was investigated in the presence of heavy metal (HM) ions. Quartz crystal microbalance with dissipation (QCM-D) test showed that MONT deposition onto silica is affected by the positive charge of MONT edges, whereby a low pH and a high ionic strength are conducive to this deposition. Deposition mainly occurred in the face-plane mode and this was reversible. HMs promoted deposition more strongly than Na+, Mg2+, or Ca2+. The bonding stability between MONT edges and the silica surface was so strongly enhanced by HM bridging that the deposition was irreversible. Density functional theory simulation revealed that the MONT edge (010) was more easily attached to the silica surface than the MONT surface (001). The adsorption energy of MONT edges on the silica surface increase with HM bridging and increased with heavy metal electronegative values. This work revealed how HMs favor the deposition of clay colloids onto silica and highlights the importance of heavy metal properties in the retention, thereby contributing to a comprehensive understanding of the migration and fate of HMs related to clay colloids.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis