Jagrit Grover, Amal Tom Sebastian, Siddhartha Maiti, Alex C. Bissember, Debabrata Maiti
{"title":"Correction: Unified approaches in transition metal catalyzed C(sp3)–H functionalization: recent advances and mechanistic aspects","authors":"Jagrit Grover, Amal Tom Sebastian, Siddhartha Maiti, Alex C. Bissember, Debabrata Maiti","doi":"10.1039/d5cs90015h","DOIUrl":"https://doi.org/10.1039/d5cs90015h","url":null,"abstract":"Correction for ‘Unified approaches in transition metal catalyzed C(sp<small><sup>3</sup></small>)–H functionalization: recent advances and mechanistic aspects’ by Jagrit Grover <em>et al.</em>, <em>Chem. Soc. Rev.</em>, 2025, https://doi.org/10.1039/d0cs00488j.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"13 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the potential of metal–organic framework based composites as key players in bisphenol detection","authors":"Sayali Atkare, Shweta Jagtap, Dattatray J. Late","doi":"10.1039/d4cs01117a","DOIUrl":"https://doi.org/10.1039/d4cs01117a","url":null,"abstract":"The extensive usage of bisphenols in the production of plastics and other materials has raised concerns about their potential adverse effects on human and marine ecosystems. This comprehensive review paper aims to provide insights into the various types of bisphenols and their derivatives, as well as the multiple pathways through which human and marine life can be exposed to these compounds. Additionally, it highlights the growing importance of developing effective detection methods for bisphenols and their derivatives due to their potential health and environmental implications. The focus then shifts towards metal–organic frameworks (MOFs) as promising materials for the detection of bisphenols. We delve into the characteristic properties of MOFs and their potential and limitations in the detection of bisphenols and their derivatives. This paper also addresses the significance of pristine MOFs and explores the potential of MOF-based composites for achieving enhanced detection performance. Subsequently, various detection techniques utilizing MOFs and their composites are reviewed. In the final sections, the recent strategic developments and challenges in this field, offering a concise summary of the principal findings of this review, novel approaches, limitations of current methodologies, and emerging trends for future directions, are discussed. This comprehensive exploration of the subject matter not only illuminates the current state of research on the detection of bisphenols but also provides valuable insights into the opportunities and challenges in this evolving field. In conclusion, this review underscores the critical importance of advancing the detection of bisphenols and their derivatives, with MOFs and their composites emerging as promising candidates for more efficient and sensitive detection. The potential for their applications in diverse fields, coupled with ongoing research efforts, suggests a bright future for MOF-based bisphenol detection technologies.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"64 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye
{"title":"Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis.","authors":"Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye","doi":"10.1039/d4cs01329h","DOIUrl":"https://doi.org/10.1039/d4cs01329h","url":null,"abstract":"<p><p>During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging.","authors":"Aiwen Yu, Xinyu He, Tianruo Shen, Xinyu Yu, Wuyu Mao, Weijie Chi, Xiaogang Liu, Haoxing Wu","doi":"10.1039/d3cs00520h","DOIUrl":"https://doi.org/10.1039/d3cs00520h","url":null,"abstract":"<p><p>Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debashis Dhara, Laurence A Mulard, Marcel Hollenstein
{"title":"Natural, modified and conjugated carbohydrates in nucleic acids.","authors":"Debashis Dhara, Laurence A Mulard, Marcel Hollenstein","doi":"10.1039/d4cs00799a","DOIUrl":"https://doi.org/10.1039/d4cs00799a","url":null,"abstract":"<p><p>Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biocatalytic cascade reactions for management of diseases.","authors":"Ya-Ping Xiao, Jiayingzi Wu, Peng-Hang Chen, Shan Lei, Jing Lin, Xin Zhou, Peng Huang","doi":"10.1039/d3cs00410d","DOIUrl":"https://doi.org/10.1039/d3cs00410d","url":null,"abstract":"<p><p>Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of hydrophobic catalysts for reducing the CO<sub>2</sub> emission during the conversion of syngas into chemicals and fuels.","authors":"Yanfei Xu, Mingyue Ding","doi":"10.1039/d4cs00731j","DOIUrl":"https://doi.org/10.1039/d4cs00731j","url":null,"abstract":"<p><p>Syngas conversion is a key process for the production of chemicals and fuels from non-petroleum resources, such as biomass, coal, and natural gas. Water produced during syngas conversion can not only boost the production of CO<sub>2</sub> by-products <i>via</i> inducing the water-gas shift side reaction, but also inhibit the conversion of CO by occupying the active sites on the catalyst, leading to high CO<sub>2</sub> emission and low carbon utilization efficiency. Reducing CO<sub>2</sub> emission during syngas conversion is a main development direction of the energy chemical industry toward the goal of carbon neutrality. It has been reported that hydrophobic modification can reduce a surface's affinity to water molecules, and many breakthroughs in the development of hydrophobic catalysts for weakening the negative effect of water on syngas conversion have been made recently. A rapidly growing number of studies have demonstrated the versatility of hydrophobic catalysts. In this review, we systematically summarize and discuss the development of hydrophobic catalysts in syngas chemistry since the 2000s. These hydrophobic catalysts can be divided into three categories, <i>i.e.</i>, catalysts with hydrophobic surfaces, catalysts with hydrophobic supports, and catalysts physically mixed with hydrophobic promoters. Different categories of hydrophobic catalysts play different roles in syngas conversion. The perspectives and challenges for the future design of hydrophobic catalysts are also discussed.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yitao Wu, Meiqi Tang, Michael L Barsoum, Zhijie Chen, Feihe Huang
{"title":"Functional crystalline porous framework materials based on supramolecular macrocycles.","authors":"Yitao Wu, Meiqi Tang, Michael L Barsoum, Zhijie Chen, Feihe Huang","doi":"10.1039/d3cs00939d","DOIUrl":"https://doi.org/10.1039/d3cs00939d","url":null,"abstract":"<p><p>Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, <i>etc.</i> Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (<i>i.e.</i>, MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arpita Roy, Ronak Afshari, Saumya Jain, Yuting Zheng, Min-Hsuan Lin, Shea Zenkar, Junyi Yin, Jun Chen, Nicholas A. Peppas, Nasim Annabi
{"title":"Advances in conducting nanocomposite hydrogels for wearable biomonitoring","authors":"Arpita Roy, Ronak Afshari, Saumya Jain, Yuting Zheng, Min-Hsuan Lin, Shea Zenkar, Junyi Yin, Jun Chen, Nicholas A. Peppas, Nasim Annabi","doi":"10.1039/d4cs00220b","DOIUrl":"https://doi.org/10.1039/d4cs00220b","url":null,"abstract":"Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"1 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianlu Sun, Yichen Du, Yijiang Liu, Dongbo Yan, Xiaodong Li, Dong Ha Kim, Zhiqun Lin, Xiaosi Zhou
{"title":"Recent advances in potassium metal batteries: electrodes, interfaces and electrolytes.","authors":"Jianlu Sun, Yichen Du, Yijiang Liu, Dongbo Yan, Xiaodong Li, Dong Ha Kim, Zhiqun Lin, Xiaosi Zhou","doi":"10.1039/d4cs00845f","DOIUrl":"https://doi.org/10.1039/d4cs00845f","url":null,"abstract":"<p><p>The exceptional theoretical capacity of potassium metal anodes (687 mA h g<sup>-1</sup>), along with their low electrochemical potential, makes potassium metal batteries (PMBs) highly attractive for achieving high energy density. This review first provides an overview of potassium metal anodes, including their origin, current development status, and distinctive advantages compared to other metal anodes. Then, it discusses the composition and characteristics of emerging breakthrough PMBs, such as K-S, K-O<sub>2</sub>, K-CO<sub>2</sub> batteries, and anode-free metal batteries. Subsequently, we delve into the pivotal challenges and theoretical research pertaining to PMBs, such as potassium metal nucleation/stripping, dendritic growth in PMBs, and unstable interfaces. Furthermore, we comprehensively examine the latest strategies in electrode design (including alloy, host, and current collector design), interface engineering (such as artificial solid electrolyte interphase layers, barrier layer design, and separator modification), and electrolyte optimization concerning nucleation, cycling stability, coulombic efficiency, and the development of PMBs. Finally, we introduce key characterization techniques, including <i>in situ</i> liquid phase secondary ion mass spectrometry, titration gas chromatography, neutron-based characterization, and computational simulation. This review will propel advancements in electrodes, separators, and electrolytes for innovative PMBs and other similar alkali metal batteries.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}