Chemical Society Reviews最新文献

筛选
英文 中文
Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques 利用基于 X 射线的同步辐射技术对单原子催化剂进行结构、原位和操作表征的进展与挑战
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-22 DOI: 10.1039/d3cs00967j
Yuhang Liu, Xiaozhi Su, Jie Ding, Jing Zhou, Zhen Liu, Xiangjun Wei, Hong Bin Yang, Bin Liu
{"title":"Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques","authors":"Yuhang Liu, Xiaozhi Su, Jie Ding, Jing Zhou, Zhen Liu, Xiangjun Wei, Hong Bin Yang, Bin Liu","doi":"10.1039/d3cs00967j","DOIUrl":"https://doi.org/10.1039/d3cs00967j","url":null,"abstract":"Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and <em>in situ</em>/<em>operando</em> observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on hydrogen production, storage, and applications 氢气生产、储存和应用综述
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-18 DOI: 10.1039/d3cs00731f
Chamila Gunathilake, Ibrahim Soliman, Dhruba Panthi, Peter Tandler, Omar Fatani, Noman Alias Ghulamullah, Dinesh Marasinghe, Mohamed Farhath, Terrence Madhujith, Kirt Conrad, Yanhai Du, Mietek Jaroniec
{"title":"A comprehensive review on hydrogen production, storage, and applications","authors":"Chamila Gunathilake, Ibrahim Soliman, Dhruba Panthi, Peter Tandler, Omar Fatani, Noman Alias Ghulamullah, Dinesh Marasinghe, Mohamed Farhath, Terrence Madhujith, Kirt Conrad, Yanhai Du, Mietek Jaroniec","doi":"10.1039/d3cs00731f","DOIUrl":"https://doi.org/10.1039/d3cs00731f","url":null,"abstract":"The transformation from combustion-based to renewable energy technologies is of paramount importance due to the rapid depletion of fossil fuels and the dramatic increase in atmospheric CO<small><sub>2</sub></small> levels resulting from growing global energy demands. To achieve the Paris Agreement's long-term goal of carbon neutrality by 2050, the full implementation of clean and sustainable energy sources is essential. Consequently, there is an urgent demand for zero or low-carbon fuels with high energy density that can produce electricity and heat, power vehicles, and support global trade. This review presents the global motivation to reduce carbon dioxide by utilizing hydrogen technology, which is key to meeting future energy demands. It discusses the basic properties of hydrogen and its application in both prototype and large-scale efficient technologies. Hydrogen is a clean fuel and a versatile energy carrier; when used in fuel cells or combustion devices, the final product is water vapor. Hydrogen gas production methods are reviewed across renewable and non-renewable sources, with reaction processes categorized as green, blue, grey, black, pink, and turquoise, depending on the reaction pathway and CO<small><sub>2</sub></small> emissions management. This review covers the applications of hydrogen technology in petroleum refining, chemical and metrological production, hydrogen fuel cell electric vehicles (HFCEVs), backup power generation, and its use in transportation, space, and aeronautics. It assesses physical and material-based hydrogen storage methods, evaluating their feasibility, performance, and safety, and comparing HFCEVs with battery and gasoline vehicles from environmental and economic perspectives. Finally, the prospects and challenges associated with hydrogen production, handling, storage, transportation, and safety are also discussed.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging two-dimensional ferromagnetic semiconductors 新出现的二维铁磁半导体
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-15 DOI: 10.1039/d4cs00378k
Denan Kong, Chunli Zhu, Chunyu Zhao, Jijian Liu, Ping Wang, Xiangwei Huang, Shoujun Zheng, Dezhi Zheng, Ruibin Liu, Jiadong Zhou
{"title":"Emerging two-dimensional ferromagnetic semiconductors","authors":"Denan Kong, Chunli Zhu, Chunyu Zhao, Jijian Liu, Ping Wang, Xiangwei Huang, Shoujun Zheng, Dezhi Zheng, Ruibin Liu, Jiadong Zhou","doi":"10.1039/d4cs00378k","DOIUrl":"https://doi.org/10.1039/d4cs00378k","url":null,"abstract":"Two-dimensional (2D) semiconductors have attracted considerable attention for their potential in extending Moore's law and advancing next-generation electronic devices. Notably, the discovery and development of 2D ferromagnetic semiconductors (FMSs) open exciting opportunities in manipulating both charge and spin, enabling the exploration of exotic properties and the design of innovative spintronic devices. In this review, we aim to offer a comprehensive summary of emerging 2D FMSs, covering their atomic structures, physical properties, preparation methods, growth mechanisms, magnetism modulation techniques, and potential applications. We begin with a brief introduction of the atomic structures and magnetic properties of novel 2D FMSs. Next, we delve into the latest advancements in the exotic physical properties of 2D FMSs. Following that, we summarize the growth methods, associated growth mechanisms, magnetism modulation techniques and spintronic applications of 2D FMSs. Finally, we offer insights into the challenges and potential applications of 2D FMSs, which may inspire further research in developing high-density, non-volatile storage devices based on 2D FMSs.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autocatalytic DNA circuitries 自动催化 DNA 电路
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-14 DOI: 10.1039/d4cs00046c
Qiong Wu, Wei Xu, Jinhua Shang, Jiajing Li, Xiaoqing Liu, Fuan Wang, Jinghong Li
{"title":"Autocatalytic DNA circuitries","authors":"Qiong Wu, Wei Xu, Jinhua Shang, Jiajing Li, Xiaoqing Liu, Fuan Wang, Jinghong Li","doi":"10.1039/d4cs00046c","DOIUrl":"https://doi.org/10.1039/d4cs00046c","url":null,"abstract":"Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks 探索无晶体多孔结构:金属和共价有机框架中配对分布函数的进展
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-14 DOI: 10.1039/d4cs00267a
Ignacio Romero-Muñiz, Edward Loukopoulos, Ying Xiong, Félix Zamora, Ana E. Platero-Prats
{"title":"Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks","authors":"Ignacio Romero-Muñiz, Edward Loukopoulos, Ying Xiong, Félix Zamora, Ana E. Platero-Prats","doi":"10.1039/d4cs00267a","DOIUrl":"https://doi.org/10.1039/d4cs00267a","url":null,"abstract":"The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom–atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp2)-H bonds. 金属和酶催化碳烯插入 X-H 和 C(sp2)-H 键的机理和立体选择性。
IF 40.4 1区 化学
Chemical Society Reviews Pub Date : 2024-10-11 DOI: 10.1039/d4cs00742e
Reena Balhara, Ritwika Chatterjee, Garima Jindal
{"title":"Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp<sup>2</sup>)-H bonds.","authors":"Reena Balhara, Ritwika Chatterjee, Garima Jindal","doi":"10.1039/d4cs00742e","DOIUrl":"https://doi.org/10.1039/d4cs00742e","url":null,"abstract":"<p><p>Constructing highly proficient C-X (X = O, N, S, <i>etc.</i>) and C-C bonds by leveraging TMs (transition metals) (Fe, Cu, Pd, Rh, Au, <i>etc.</i>) and enzymes to catalyze carbene insertion into X-H/C(sp<sup>2</sup>)-H is a highly versatile strategy. This is primarily achieved through the <i>in situ</i> generation of metal carbenes from the interaction of TMs with diazo compounds. Over the last few decades, significant advancements have been made, encompassing a wide array of X-H bond insertions using various TMs. These reactions typically favor a stepwise ionic pathway where the nucleophilic attack on the metal carbene leads to the generation of a metal ylide species. This intermediate marks a critical juncture in the reaction cascade, presenting multiple avenues for proton transfer to yield the X-H inserted product. The mechanism of C(sp<sup>2</sup>)-H insertion reactions closely resembles those of X-H insertion reactions and thus have been included here. A major development in carbene insertion reactions has been the use of engineered enzymes as catalysts. Since the seminal report of a non-natural \"carbene transferase\" by Arnold in 2013, \"P411\", several heme-based enzymes have been reported in the literature to catalyze various abiological carbene insertion reactions into C(sp<sup>2</sup>)-H, N-H and S-H bonds. These enzymes possess an extraordinary ability to regulate the orientation and conformations of reactive intermediates, facilitating stereoselective carbene transfers. However, the absence of a suitable stereochemical model has impeded the development of asymmetric reactions employing a lone chiral catalyst, including enzymes. There is a pressing need to investigate alternative mechanisms and models to enhance our comprehension of stereoselectivity in these processes, which will be crucial for advancing the fields of asymmetric synthesis and biocatalysis. The current review aims to provide details on the mechanistic aspects of the asymmetric X-H and C(sp<sup>2</sup>)-H insertion reactions catalyzed by Fe, Cu, Pd, Rh, Au, and enzymes, focusing on the detailed mechanism and stereochemical model. The review is divided into sections focusing on a specific X-H/C(sp<sup>2</sup>)-H bond type catalyzed by different TMs and enzymes.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-driven nitrogen fixation routes for green ammonia production 绿色氨生产的光驱动固氮路线
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-10 DOI: 10.1039/d3cs01075a
Laura Collado, Alejandro H. Pizarro, Mariam Barawi, Miguel García-Tecedor, Marta Liras, Víctor A. de la Peña O'Shea
{"title":"Light-driven nitrogen fixation routes for green ammonia production","authors":"Laura Collado, Alejandro H. Pizarro, Mariam Barawi, Miguel García-Tecedor, Marta Liras, Víctor A. de la Peña O'Shea","doi":"10.1039/d3cs01075a","DOIUrl":"https://doi.org/10.1039/d3cs01075a","url":null,"abstract":"The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N<small><sub>2</sub></small> fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation 挖掘潜力:机器学习在电化学氢能转化的电催化剂设计中的应用
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-09 DOI: 10.1039/d4cs00844h
Rui Ding, Junhong Chen, Yuxin Chen, Jianguo Liu, Yoshio Bando, Xuebin Wang
{"title":"Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation","authors":"Rui Ding, Junhong Chen, Yuxin Chen, Jianguo Liu, Yoshio Bando, Xuebin Wang","doi":"10.1039/d4cs00844h","DOIUrl":"https://doi.org/10.1039/d4cs00844h","url":null,"abstract":"Machine learning (ML) is rapidly emerging as a pivotal tool in the hydrogen energy industry for the creation and optimization of electrocatalysts, which enhance key electrochemical reactions like the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the hydrogen oxidation reaction (HOR), and the oxygen reduction reaction (ORR). This comprehensive review demonstrates how cutting-edge ML techniques are being leveraged in electrocatalyst design to overcome the time-consuming limitations of traditional approaches. ML methods, using experimental data from high-throughput experiments and computational data from simulations such as density functional theory (DFT), readily identify complex correlations between electrocatalyst performance and key material descriptors. Leveraging its unparalleled speed and accuracy, ML has facilitated the discovery of novel candidates and the improvement of known products through its pattern recognition capabilities. This review aims to provide a tailored breakdown of ML applications in a format that is readily accessible to materials scientists. Hence, we comprehensively organize ML-driven research by commonly studied material types for different electrochemical reactions to illustrate how ML adeptly navigates the complex landscape of descriptors for these scenarios. We further highlight ML's critical role in the future discovery and development of electrocatalysts for hydrogen energy transformation. Potential challenges and gaps to fill within this focused domain are also discussed. As a practical guide, we hope this work will bridge the gap between communities and encourage novel paradigms in electrocatalysis research, aiming for more effective and sustainable energy solutions.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-rods in Ni-rich layered cathodes for practical batteries 用于实用电池的富镍层状阴极中的纳米棒
IF 46.2 1区 化学
Chemical Society Reviews Pub Date : 2024-10-09 DOI: 10.1039/d3cs01110k
Geon-Tae Park, Nam-Yung Park, Hoon-Hee Ryu, H. Hohyun Sun, Jang-Yeon Hwang, Yang-Kook Sun
{"title":"Nano-rods in Ni-rich layered cathodes for practical batteries","authors":"Geon-Tae Park, Nam-Yung Park, Hoon-Hee Ryu, H. Hohyun Sun, Jang-Yeon Hwang, Yang-Kook Sun","doi":"10.1039/d3cs01110k","DOIUrl":"https://doi.org/10.1039/d3cs01110k","url":null,"abstract":"Lithium transition metal oxide layers, Li[Ni<small><sub>1−<em>x</em>−<em>y</em></sub></small>Co<small><sub><em>x</em></sub></small>(Mn and/or Al)<small><sub><em>y</em></sub></small>]O<small><sub>2</sub></small>, are widely used and mass-produced for current rechargeable battery cathodes. Development of cathode materials has focused on increasing the Ni content by simply controlling the chemical composition, but as the Ni content has almost reached its limit, a new breakthrough is required. In this regard, microstructural modification is rapidly emerging as a prospective approach, namely in the production of nano-rod layered cathode materials. A comprehensive review of the physicochemical properties and electrochemical performances of cathodes bearing the nano-rod microstructure is provided herein. A detailed discussion is regarding the structural stability of the cathode, which should be maximized to suppress microcrack formation, the main cause of capacity fading in Ni-rich cathode materials. In addition, the morphological features required to achieve optimal performance are examined. Following a discussion of the initial nano-rod cathodes, which were based on compositional concentration gradients, the preparation of nano-rod cathodes without the inclusion of a concentration gradient is reviewed, highlighting the importance of the precursor. Subsequently, the challenges and advances associated with the nano-rod structure are discussed, including considerations for synthesizing nano-rod cathodes and surface shielding of the nano-rod structure. It goes on to cover nano-rod cathode materials for next-generation batteries (<em>e.g.</em>, all-solid-state, lithium-metal, and sodium-ion batteries), inspiring the battery community and other materials scientists looking for clues to the solution of the challenges that they encounter.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":46.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. 电催化的动态演化过程:结构演化、特征描述和调节。
IF 40.4 1区 化学
Chemical Society Reviews Pub Date : 2024-10-09 DOI: 10.1039/d3cs00756a
Chao Xie, Wei Chen, Yanyong Wang, Yahui Yang, Shuangyin Wang
{"title":"Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation.","authors":"Chao Xie, Wei Chen, Yanyong Wang, Yahui Yang, Shuangyin Wang","doi":"10.1039/d3cs00756a","DOIUrl":"https://doi.org/10.1039/d3cs00756a","url":null,"abstract":"<p><p>Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信