Materials Horizons最新文献

筛选
英文 中文
Efficient photodegradation of carbamazepine by organocatalysts incorporating a third component with a more complementary absorption spectrum. 利用含有第三种成分的有机催化剂对卡马西平进行高效光降解,其吸收光谱更具互补性。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-11 DOI: 10.1039/d4mh01030b
Min Long, Ciyuan Huang, Xiao Huang, Linji Yang, Liangsheng Chen, Ke Sun, Caiyun Wang, Liying Zhang, Libin Zhang, Songlin Cai, Shangfei Yao, Hongxiang Zhu, Tao Yang, Bingsuo Zou, Tao Liu
{"title":"Efficient photodegradation of carbamazepine by organocatalysts incorporating a third component with a more complementary absorption spectrum.","authors":"Min Long, Ciyuan Huang, Xiao Huang, Linji Yang, Liangsheng Chen, Ke Sun, Caiyun Wang, Liying Zhang, Libin Zhang, Songlin Cai, Shangfei Yao, Hongxiang Zhu, Tao Yang, Bingsuo Zou, Tao Liu","doi":"10.1039/d4mh01030b","DOIUrl":"10.1039/d4mh01030b","url":null,"abstract":"<p><p>Carbamazepine, recognized as one of the most prevalent pharmaceuticals, has attracted considerable attention due to its potential impact on ecosystems and human health. In response, this work synthesized and characterized a novel environmentally friendly and cost-effective organic semiconductor photocatalyst PM6:Y6:ITCPTC loaded with coconut shell charcoal, and then investigated its performance for photocatalytic removal. Remarkably, carbamazepine demonstrated a photodegradation efficiency exceeding 99% within a mere 20 minutes of exposure to one sunlight intensity, and also showed good effectiveness under a low light intensity of 50 W. The catalyst exhibited exceptional reusability and stability, maintaining degradation efficiency between 95-99% over 25 cycles. The high photocatalytic activity of PM6:Y6:ITCPTC is primarily attributed to the incorporation of the third component (named ITCPTC), which enhances exciton dissociation and carrier transfer, generating superoxide radicals, electrons, and holes. Furthermore, the plausible degradation pathway of carbamazepine was proposed based on the measured intermediates and density functional theory calculations.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF4:Yb,Tm UCNPs. 含有 NaYF4:Yb,Tm UCNPs 的胆甾液晶聚合物网络的上转换圆偏振发光。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-10 DOI: 10.1039/d4mh00966e
Liting Xu, Yi Li, Wei Liu, Yonggang Yang
{"title":"Upconversion circularly polarized luminescence of cholesteric liquid crystal polymer networks with NaYF<sub>4</sub>:Yb,Tm UCNPs.","authors":"Liting Xu, Yi Li, Wei Liu, Yonggang Yang","doi":"10.1039/d4mh00966e","DOIUrl":"https://doi.org/10.1039/d4mh00966e","url":null,"abstract":"<p><p>Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF<sub>4</sub>:Yb,Tm, with uniform morphology and high crystallinity, were prepared <i>via</i> a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |<i>g</i>callum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |<i>g</i>callum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |<i>g</i>callum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vanadium niobium carbide (VNbCTx) bimetallic MXene derived V5S8-Nb2O5@MXene heterostructures for efficiently boosting the adsorption and catalytic performance of lithium polysulfide. 碳化钒铌 (VNbCTx) 双金属 MXene 衍生 V5S8-Nb2O5@MXene 异质结构可有效提高多硫化锂的吸附和催化性能。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-09 DOI: 10.1039/d4mh00674g
Yuqing Chen, Yongjie Huang, Qing Xu, Liying Yang, Ningyi Jiang, Shougen Yin
{"title":"Vanadium niobium carbide (VNbCT<sub><i>x</i></sub>) bimetallic MXene derived V<sub>5</sub>S<sub>8</sub>-Nb<sub>2</sub>O<sub>5</sub>@MXene heterostructures for efficiently boosting the adsorption and catalytic performance of lithium polysulfide.","authors":"Yuqing Chen, Yongjie Huang, Qing Xu, Liying Yang, Ningyi Jiang, Shougen Yin","doi":"10.1039/d4mh00674g","DOIUrl":"https://doi.org/10.1039/d4mh00674g","url":null,"abstract":"<p><p>To alleviate the shuttle effect in lithium-sulfur (Li-S) batteries, the electrocatalytic conversion of polysulfides serves as a vital strategy. However, achieving a synergy that combines robust adsorption with high catalytic activity continues to pose significant challenges. Herein, a simple solid-state sintering method is employed to transform vanadium-niobium carbide MXene (VNbCT<sub><i>x</i></sub>) into a heterogeneous structure of V<sub>5</sub>S<sub>8</sub>-Nb<sub>2</sub>O<sub>5</sub>@VNbCT<sub><i>x</i></sub> MXene (denoted as V<sub>5</sub>S<sub>8</sub>-Nb<sub>2</sub>O<sub>5</sub>@MX). The Nb<sub>2</sub>O<sub>5</sub> component immobilizes lithium polysulfides (LiPSs) at the electrode through its strong chemical affinity, while the V<sub>5</sub>S<sub>8</sub> fraction serves as an outstanding electrochemical catalyst, enhancing the reaction kinetics of sulfur precipitation. Furthermore, the VNbCT<sub><i>x</i></sub> MXene precursor scaffold is preserved through the conversion and uniformly distributed throughout the composite, exhibiting excellent electrical conductivity. Thanks to the synergistic \"capture-adsorption-catalysis\" action on LiPSs, the V<sub>5</sub>S<sub>8</sub>-Nb<sub>2</sub>O<sub>5</sub>@MX composite effectively restrains the shuttle effect. The as-prepared Li-S battery demonstrates a significant increase in specific capacity, reaching 1508 mA h g<sup>-1</sup> at 0.1C and maintaining a capacity decay of approximately 0.027% per cycle after 500 cycles at 1C and 766.1 mA h g<sup>-1</sup> at 5C. Even under a high sulfur loading of 5.75 mg cm<sup>-2</sup>, the battery can maintain a specific capacity of 596.6 mA h g<sup>-1</sup> and exhibit significant cycling stability after 100 cycles. DFT calculations indicate that the V<sub>5</sub>S<sub>8</sub>-Nb<sub>2</sub>O<sub>5</sub>@MX heterostructure exhibits a higher binding energy of 5.34 eV and a lower decomposition barrier energy of 0.68 eV, presenting potential advantages in accelerating the conversion reactions of LiPSs. Our research offers a straightforward approach for designing metal oxide-sulfide heterostructured catalysts that deliver superior performance and enhance the electrocatalytic conversion of LiPSs, clearing the path for high performance Li-S batteries.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine-integrated all-hydrogel multi-electrode arrays for neural activity recording. 用于神经活动记录的多巴胺集成全水凝胶多电极阵列。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-09 DOI: 10.1039/d4mh00939h
Mingze Zeng, Jie Ding, Yuan Tian, Yusheng Zhang, Xiaoyin Liu, Zhihong Chen, Jing Sun, Chengheng Wu, Huabing Yin, Dan Wei, Hongsong Fan
{"title":"Dopamine-integrated all-hydrogel multi-electrode arrays for neural activity recording.","authors":"Mingze Zeng, Jie Ding, Yuan Tian, Yusheng Zhang, Xiaoyin Liu, Zhihong Chen, Jing Sun, Chengheng Wu, Huabing Yin, Dan Wei, Hongsong Fan","doi":"10.1039/d4mh00939h","DOIUrl":"https://doi.org/10.1039/d4mh00939h","url":null,"abstract":"<p><p>Investigation of brain neural circuits is essential for deciphering the diagnostics and therapeutics of neurodegenerative diseases. The main concerns with traditional rigid metal electrodes include intrinsic mechanical mismatch between sensing electrodes and tissues, unavoidable foreign body responses, and inadequate spatiotemporal resolution, resulting in a deficiency of sensing performance. All-hydrogel neural electrodes with multi-electrode arrays (MEAs) suggest a viable way to modulate the trade-off between tissue-mechanical compliance and excellent spatiotemporal recording capacity, but still face the issues of insufficient conductivity and unstable interlayer bonding. Herein, we constructed a four-layer all-hydrogel neural electrode, by sandwiching a conductive hydrogel layer within two encapsulation hydrogel layers, with a shielding hydrogel layer located on top. We introduce a dual-strategy treatment to induce controllable phase separation in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogel, which achieved ultra-high conductivity (up to 4176 S cm<sup>-1</sup>) comparable to that of metals and precise spatial resolution (∼15 μm) suitable for single neuron recording. In addition, the utilization of polyphenol chemistry mediated adaptive adhesion endowed this neural electrode with flexible and stable interlayer bonding among conductive-encapsulation-shielding layers and the tissue-electrode interface. Consequently, the all-hydrogel neural electrode exhibited a tenfold higher signal-to-noise ratio than a commercial silver electrode, realized the recording of weak neural activity signals within single and multiple neurons in epileptic rats, and applied man-made stimulation to the cerebral cortex of rats during seizures. This work provides a useful tool to understand the development, function and treatment of neurodegenerative diseases.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrahigh-throughput cross-flow filtration of solution-processed 2D materials enabled by porous ceramic membranes. 利用多孔陶瓷膜实现溶液加工二维材料的超高通量交叉流过滤。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-09 DOI: 10.1039/d4mh01205d
Santiago Diaz-Arauzo, Julia R Downing, Daphne Tsai, Jenna Trost, Janan Hui, Kevin Donahue, Nick Antonopoulos, Lindsay E Chaney, Jennifer B Dunn, Mark C Hersam
{"title":"Ultrahigh-throughput cross-flow filtration of solution-processed 2D materials enabled by porous ceramic membranes.","authors":"Santiago Diaz-Arauzo, Julia R Downing, Daphne Tsai, Jenna Trost, Janan Hui, Kevin Donahue, Nick Antonopoulos, Lindsay E Chaney, Jennifer B Dunn, Mark C Hersam","doi":"10.1039/d4mh01205d","DOIUrl":"https://doi.org/10.1039/d4mh01205d","url":null,"abstract":"<p><p>Printed electronics is a disruptive technology in multiple applications including environmental and biological sensors, flexible displays, and wearable diagnostic devices. With superlative electronic, optical, mechanical, and chemical properties, two-dimensional (2D) materials are promising candidates for printable electronic inks. While liquid-phase exfoliation (LPE) methods can produce electronic-grade 2D materials, conventional batch separation processes typically rely on centrifugation, which requires significant time and effort to remove incompletely exfoliated bulk powders, hindering the scale-up of 2D ink manufacturing. While cross-flow filtration (CFF) has emerged as a promising continuous flow separation method for solution-processed 2D nanosheets, previously demonstrated polymer CFF membranes necessitate low 2D nanosheet concentrations to avoid fouling, which ultimately limits mass throughput. Here, we demonstrate a fully flow-based, exfoliation-to-ink system for electronic-grade 2D materials using an integrated cross-flow separation and concentration system. To overcome the relatively low-throughput processing concentrations of incumbent polymer CFF membranes, we employ porous ceramic CFF membranes that are tolerant to 10-fold higher nanosheet concentrations and flow rates without compromising separation efficiency. Furthermore, we demonstrate a concentration method <i>via</i> cross-flow ultrafiltration, where the retentate can be directly formulated into printable inks with electronic-grade performance that meets or exceeds centrifugally produced inks. Life cycle assessment and technoeconomic analysis quantitatively confirm the advantages of ceramic <i>versus</i> polymer CFF membranes including reductions of 97%, 96%, 94%, and 93% for greenhouse gas emissions, water consumption, fossil fuel consumption, and specific production costs, respectively. Overall, this work presents an environmentally sustainable and cost-effective solution for the fabrication, separation, and printing of electronic-grade 2D materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reticular chemistry-aided effective design of new second-order nonlinear optical selenites. 网状化学辅助有效设计新型二阶非线性光学硒化物。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-09 DOI: 10.1039/d4mh01043d
Qian Li, Yi Zheng, Hongping Wu, Zhanggui Hu, Jiyang Wang, Yicheng Wu, Hongwei Yu
{"title":"Reticular chemistry-aided effective design of new second-order nonlinear optical selenites.","authors":"Qian Li, Yi Zheng, Hongping Wu, Zhanggui Hu, Jiyang Wang, Yicheng Wu, Hongwei Yu","doi":"10.1039/d4mh01043d","DOIUrl":"https://doi.org/10.1039/d4mh01043d","url":null,"abstract":"<p><p>Noncentrosymmetric (NCS) compounds are particularly important for modern optoelectronic technology, yet their rational structural design remains a great challenge. Herein, assisted by the idea of bottom-up reticular chemistry, seven new NCS selenites, AM<sub>3</sub>[SeO<sub>3</sub>]<sub>2</sub>[Se<sub>2</sub>O<sub>5</sub>]<sub>3</sub> (A = K<sup>+</sup>/Rb<sup>+</sup>/Cs<sup>+</sup>; M = Al<sup>3+</sup>/Ga<sup>3+</sup>/In<sup>3+</sup>), have been successfully designed and synthesized by assembling main-group metal octahedral units and SeO<sub>3</sub> units, to construct honeycomb layers with regular channels to accommodate a variety of cations, and using planar hexagonal shapes to orientate the groups within the network. Based on this strategy, the overall symmetry of the solid-state compounds was effectively controlled, and by modifying locally connected atoms or groups, without disrupting the overall prototypical framework, a series of iso-reticular analogues have been obtained, which greatly increases the probability of NCS structures. Three of these compounds, CsM<sub>3</sub>[SeO<sub>3</sub>]<sub>2</sub>[Se<sub>2</sub>O<sub>5</sub>]<sub>3</sub> were characterized experimentally and theoretically. The results show that they all have moderate second harmonic generation (SHG) responses, which are as large as that of commercial KH<sub>2</sub>PO<sub>4</sub>, and wide band gaps. Our study confirms the feasibility of reticular chemistry-assisted strategy in designing nonlinear optical materials with stable frameworks and good performance.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks. 光固化交联剂的直接修复,用于共价适应性网络的重复光基三维打印。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-08 DOI: 10.1039/d4mh00823e
Loc Tan Nguyen, Filip E Du Prez
{"title":"Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks.","authors":"Loc Tan Nguyen, Filip E Du Prez","doi":"10.1039/d4mh00823e","DOIUrl":"https://doi.org/10.1039/d4mh00823e","url":null,"abstract":"<p><p>Light-based processing of thermosets has gained increasing attention because of its broad application field including its use in digital light processing (DLP) 3D printing. This technique offers efficient design and fabrication of complex structures but typically results in non-recyclable thermoset-based products. To address this issue, we describe here a photocurable, dynamic β-amino ester (BAE) based cross-linker that is not only suitable for DLP printing but can also be chemically degraded <i>via</i> transesterification upon the addition of 2-hydroxyethyl methacrylate (HEMA) as a decross-linker. This conceptually new protocol allows for efficient depolymerization with the direct restoration of curable monomers in a single step without the addition of external catalysts or solvents. By implementing this protocol, we have established a chemical recycling loop for multiple cycles of photo-cross-linking and restoration of cross-linkers, facilitating repeatable DLP 3D printing without generating any waste. The recycled materials exhibit full recovery of thermal properties and Young's modulus while maintaining 75% of their tensile strength for at least three cycles. Simultaneously, the presence of BAE moieties enables the (re)processability of these materials through compression molding.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust second-order topological insulator in 2D van der Waals magnet CrI3. 二维范德华磁体 CrI3 中的稳健二阶拓扑绝缘体。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-08 DOI: 10.1039/d4mh00620h
Xiaorong Zou, Yingxi Bai, Ying Dai, Baibiao Huang, Chengwang Niu
{"title":"Robust second-order topological insulator in 2D van der Waals magnet CrI<sub>3</sub>.","authors":"Xiaorong Zou, Yingxi Bai, Ying Dai, Baibiao Huang, Chengwang Niu","doi":"10.1039/d4mh00620h","DOIUrl":"https://doi.org/10.1039/d4mh00620h","url":null,"abstract":"<p><p>CrI<sub>3</sub> offers an intriguing platform for exploring fundamental physics and the innovative design of spintronics devices in two-dimensional (2D) magnets, and moreover has been instrumental in the study of topological physics. However, the 2D CrI<sub>3</sub> monolayer and bilayers have long been thought to be topologically trivial. Here we uncover a hidden facet of the band topology of 2D CrI<sub>3</sub> by showing that both the CrI<sub>3</sub> monolayer and bilayers are second-order topological insulators (SOTIs) with a nonzero second Stiefel-Whitney number <i>w</i><sub>2</sub> = 1. Furthermore, the topologically nontrivial nature can be explicitly confirmed <i>via</i> the emergence of floating edge states and in-gap corner states. Remarkably, in contrast to most known magnetic topological states, we put forward that the SOTIs in 2D CrI<sub>3</sub> monolayer and bilayers are highly robust against magnetic transitions, which remain intact under both ferromagnetic and antiferromagnetic configurations. These interesting predictions not only provide a comprehensive understanding of the band topology of 2D CrI<sub>3</sub> but also offer a favorable platform to realize magnetic SOTIs for spintronics applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving broadband near-infrared emission with superior anti-thermal quenching by optimizing the excited-state population of Cr3+ in Gd3ScGa4O12 garnet phosphors. 通过优化石榴石荧光粉 Gd3ScGa4O12 中 Cr3+ 的激发态种群,实现宽带近红外发射和卓越的抗热淬灭。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-07 DOI: 10.1039/d4mh01157k
Wangyu Liu, Lifang Yuan, Haoyi Wu, Huafeng Dong, Yahong Jin
{"title":"Achieving broadband near-infrared emission with superior anti-thermal quenching by optimizing the excited-state population of Cr<sup>3+</sup> in Gd<sub>3</sub>ScGa<sub>4</sub>O<sub>12</sub> garnet phosphors.","authors":"Wangyu Liu, Lifang Yuan, Haoyi Wu, Huafeng Dong, Yahong Jin","doi":"10.1039/d4mh01157k","DOIUrl":"https://doi.org/10.1039/d4mh01157k","url":null,"abstract":"<p><p>Cr<sup>3+</sup>-activated garnet phosphors with broadband near-infrared (NIR) emission have attracted considerable interest due to their high quantum efficiency (QE) and thermal stability for widespread advanced applications. Nevertheless, how to achieve energy-saving broadband NIR phosphors that possess anti-thermal quenching (anti-TQ) without compromising the high QE has yet to be fully addressed. Herein, we report on site reconstruction within the garnet lattice by strategically positioning Sc and Ga atoms into octahedral B sites with a mole ratio of 1 : 1 to produce Gd<sub>3</sub>ScGa<sub>4</sub>O<sub>12</sub>. A reduction in crystal field strength (CFS) is thus induced, leading to a redshift of Cr<sup>3+</sup> broadband NIR emission. The inherent rigidity of the structure and the weak electron-phonon coupling (EPC) effect lay the groundwork for a thermally robust broadband NIR phosphor. The combination of bandgap engineering, finely optimizing the <sup>4</sup>T<sub>2</sub> excited state population, and precise control over the doping concentration contributes a high-performance broadband NIR emission (IQE = 82.75%) with unprecedented anti-TQ such that the NIR emission of Cr<sup>3+</sup> even increases to 198% of its room-temperature intensity at 543 K. A prototype broadband NIR pc-LED is encapsulated to deliver an NIR output power of 125.20 mW@900 mA and a wall-plug efficiency (WPE) of 6.88%@30 mA, enabling night vision, noninvasive imaging, and non-destructive detection applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atypical breathing driven two-dimensional valley multiferroicity. 非典型呼吸驱动的二维山谷多铁性。
IF 12.2 2区 材料科学
Materials Horizons Pub Date : 2024-10-07 DOI: 10.1039/d4mh01087f
Yangyang Feng, Jiangyu Zhao, Ying Dai, Baibiao Huang, Yandong Ma
{"title":"Atypical breathing driven two-dimensional valley multiferroicity.","authors":"Yangyang Feng, Jiangyu Zhao, Ying Dai, Baibiao Huang, Yandong Ma","doi":"10.1039/d4mh01087f","DOIUrl":"https://doi.org/10.1039/d4mh01087f","url":null,"abstract":"<p><p>Valley multiferroicity, coupled with ferro-valleytricity and primary ferroicities in a single phase, is of fundamental significance in condensed-matter physics and materials science, as it provides a convenient route to reverse the anomalous valley Hall (AVH) effect. Current research in this field focuses mainly on ferromagnetic ferro-valleytricity, whereas ferroelectric ferro-valleytricity is seldom explored. Here, using symmetry arguments and tight-binding model analysis, we report a novel mechanism of coupling ferro-valleytricity with ferroelectricity, <i>i.e.</i>, single-phase valley multiferroicity, in a two-dimensional magnetic lattice. This mechanism correlates to the atypical breathing nature of the magnetic lattice. Importantly, the valley physics, associated with Berry curvature, can be reversed under a ferroelectric transition, thereby guaranteeing the ferroelectrically reversible AVH effect. The underlying physics are discussed in detail. Based on first-principles calculations, we further confirm valley multiferroicity in a real 2D magnetic material of single-layer Gd<sub>2</sub>CO<sub>2</sub>. The explored phenomena and mechanism are not only useful for fundamental research in valley multiferroics but also enable a wide range of applications in nanodevices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":null,"pages":null},"PeriodicalIF":12.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信