Effect of physicochemical congestion on the catalytic conversion of arylboronic acids to phenols.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mrityunjoy Dey, Mithu Roy, Partha Pratim Borah, Sonali Roy, Amlan Jyoti Gogoi, Kalishankar Bhattacharyya, Kalyan Raidongia
{"title":"Effect of physicochemical congestion on the catalytic conversion of arylboronic acids to phenols.","authors":"Mrityunjoy Dey, Mithu Roy, Partha Pratim Borah, Sonali Roy, Amlan Jyoti Gogoi, Kalishankar Bhattacharyya, Kalyan Raidongia","doi":"10.1039/d5mh00744e","DOIUrl":null,"url":null,"abstract":"<p><p>Intense research efforts have been devoted to establishing congestion of molecules as an additional control parameter of chemical conversion. This manuscript describes designing a novel catalytic system where the rate of catalytic conversion is enhanced by nanometric congestion, using catalytic hydroxylation of arylboronic acids as the model system. An aqueous dispersion of catalytic Ni(OH)<sub>2</sub> nanosheets (Ni-NS) can be reversibly assembled and disassembled into lamellar membranes (Ni-NS-M), forming molecularly thin two-dimensional nanofluidic reactors. Remarkably, the hydroxylation rate of several arylboronic acids inside nanofluidic channels was found to be significantly different from the reactions conducted under bulk stirring conditions. The changing vibrational patterns of the reactants and the electrostatic forces of the channel walls within atomically thin channels of Ni-NS are attributed to the increased reaction rate.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00744e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intense research efforts have been devoted to establishing congestion of molecules as an additional control parameter of chemical conversion. This manuscript describes designing a novel catalytic system where the rate of catalytic conversion is enhanced by nanometric congestion, using catalytic hydroxylation of arylboronic acids as the model system. An aqueous dispersion of catalytic Ni(OH)2 nanosheets (Ni-NS) can be reversibly assembled and disassembled into lamellar membranes (Ni-NS-M), forming molecularly thin two-dimensional nanofluidic reactors. Remarkably, the hydroxylation rate of several arylboronic acids inside nanofluidic channels was found to be significantly different from the reactions conducted under bulk stirring conditions. The changing vibrational patterns of the reactants and the electrostatic forces of the channel walls within atomically thin channels of Ni-NS are attributed to the increased reaction rate.

理化堵塞对芳基硼酸催化转化为酚的影响。
为了建立分子的拥挤度作为化学转化的附加控制参数,人们进行了大量的研究。这篇手稿描述了设计一种新型的催化系统,其中催化转化的速度是通过纳米堵塞增强的,使用芳基硼酸的催化羟基化作为模型系统。催化Ni(OH)2纳米片(Ni- ns)的水分散体可以可逆地组装和拆卸成层状膜(Ni- ns - m),形成分子薄的二维纳米流体反应器。值得注意的是,几种芳基硼酸在纳米流体通道内的羟基化速率与在散装搅拌条件下进行的反应有显著差异。在Ni-NS原子薄通道内,反应物的振动模式和通道壁的静电力的变化归因于反应速率的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信