Kaihuang Chen, Jie Zhou, Chunbao Charles Xu, Zhiqiang Fang, Le Yu, Chaoji Chen, Xueqing Qiu
{"title":"磷酸化辅助细胞壁工程实现了超高强度、高离子导电性的生物膜,用于高功率盐度梯度能量收集。","authors":"Kaihuang Chen, Jie Zhou, Chunbao Charles Xu, Zhiqiang Fang, Le Yu, Chaoji Chen, Xueqing Qiu","doi":"10.1039/d5mh01003a","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm<sup>-1</sup> in 1.0 × 10<sup>-5</sup> mol L<sup>-1</sup> KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L<sup>-1</sup>) and river water (0.01 mol L<sup>-1</sup>), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m<sup>-2</sup>, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation-assisted cell wall engineering enables ultra-strong, highly ion-conductive bio-membranes for high-power salinity gradient energy harvesting.\",\"authors\":\"Kaihuang Chen, Jie Zhou, Chunbao Charles Xu, Zhiqiang Fang, Le Yu, Chaoji Chen, Xueqing Qiu\",\"doi\":\"10.1039/d5mh01003a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm<sup>-1</sup> in 1.0 × 10<sup>-5</sup> mol L<sup>-1</sup> KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L<sup>-1</sup>) and river water (0.01 mol L<sup>-1</sup>), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m<sup>-2</sup>, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01003a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01003a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
来源于纤维素基生物材料的纳米流控膜由于其可修饰的性质、有序的结构、可持续性和优异的相容性,在离子传输和调控方面受到越来越多的关注。然而,它们在离子电路、能量转换和传感方面的实际应用受到机械强度不足和离子传输性能欠佳的限制。在这项研究中,我们报道了通过磷酸化辅助细胞壁工程制备的超强、高离子导电性生物膜。这个过程在纤维素链上引入高密度阴离子磷酸基团,同时保持它们在宏观到分子尺度上的自然层次排列。制备的phoswwood -40膜(生物膜磷酸化40分钟)表现出优异的性能,在1.0 × 10-5 mol L-1 KCl水溶液中离子电导率达到21.01 mS cm-1,离子选择性为0.95,在干燥条件下拉伸强度高达241 MPa,在湿条件下拉伸强度高达66 MPa。与未修饰的膜相比,磷酸化使膜的离子电导率提高了100倍,阳离子/阴离子比率提高了38倍,这主要是由于表面电荷密度的增加和优化的离子通道可及性。在人工海水(0.5 mol L-1)和河水(0.01 mol L-1)的模拟条件下,磷酸化的PhosWood-40膜的输出功率密度达到6.4 W m-2,比未修饰的膜高出30倍,优于其他生物基纳米流体系统。这项工作强调了可再生和易于改性的纤维素基生物材料在开发高性能纳米流体系统方面的潜力。
Phosphorylation-assisted cell wall engineering enables ultra-strong, highly ion-conductive bio-membranes for high-power salinity gradient energy harvesting.
Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm-1 in 1.0 × 10-5 mol L-1 KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L-1) and river water (0.01 mol L-1), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m-2, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.