{"title":"Role of 5-HT in the enteric nervous system and enteroendocrine cells.","authors":"Nick J Spencer, Damien J Keating","doi":"10.1111/bph.15930","DOIUrl":"10.1111/bph.15930","url":null,"abstract":"<p><p>Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT<sub>3</sub> receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":" ","pages":"471-483"},"PeriodicalIF":5.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40525099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ACS Applied Materials & Interfaces Family Early Career Forum 2024","authors":"Xing Yi Ling, ","doi":"10.1021/acsanm.4c0650310.1021/acsanm.4c06503","DOIUrl":"https://doi.org/10.1021/acsanm.4c06503https://doi.org/10.1021/acsanm.4c06503","url":null,"abstract":"","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26297–26299 26297–26299"},"PeriodicalIF":5.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zacary L Croft, Oscar Valenzuela, Connor Thompson, Brendan Whitfield, Garrett Betzko, Guoliang Liu
{"title":"Copper Oxidation-Induced Nanoscale Deformation of Electromechanical, Laminate Polymer/Graphene Thin Films during Thermal Annealing: Implications for Flexible, Transparent, and Conductive Electrodes.","authors":"Zacary L Croft, Oscar Valenzuela, Connor Thompson, Brendan Whitfield, Garrett Betzko, Guoliang Liu","doi":"10.1021/acsanm.4c06372","DOIUrl":"10.1021/acsanm.4c06372","url":null,"abstract":"<p><p>The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate. In this work, we demonstrate that under improper annealing conditions, thermal annealing of poly(ether imide)/single-layer graphene (PEI/SLG) thin films on Cu causes detrimental nanoscale structural deformations, which permanently degrade the mechanical properties. Furthermore, we elucidate the mechanisms of PEI/SLG deformation during thermal annealing and find that permanent deformations and cracking are caused by Cu substrate oxidation. This study provides an understanding of annealing-induced deformation in polymer/graphene thin films. We anticipate that this knowledge will be useful for further developing defect-free, graphene-based thin film electronics.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 24","pages":"28829-28840"},"PeriodicalIF":5.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulina Chytrosz-Wrobel, Monika Golda-Cepa, Piotr Kubisiak, Waldemar Kulig, Lukasz Cwiklik, Andrzej Kotarba
{"title":"Correction to \"Sonochemical Formation of Fluorouracil Nanoparticles: Toward Controlled Drug Delivery from Polymeric Surfaces\".","authors":"Paulina Chytrosz-Wrobel, Monika Golda-Cepa, Piotr Kubisiak, Waldemar Kulig, Lukasz Cwiklik, Andrzej Kotarba","doi":"10.1021/acsanm.4c06658","DOIUrl":"https://doi.org/10.1021/acsanm.4c06658","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1021/acsanm.2c05332.].</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 24","pages":"28885"},"PeriodicalIF":5.3,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabien Silly*, Emilio Vélez-Fort, Mathieu G. Silly, Philippe Ohresser* and Jacques Jean Bonvoisin*,
{"title":"Enhanced Magnetic Properties in a Copper β-Diketonato Complex Film Stabilized by I··· I Interactions on a Graphite Surface at 2 K for Molecular Spintronics","authors":"Fabien Silly*, Emilio Vélez-Fort, Mathieu G. Silly, Philippe Ohresser* and Jacques Jean Bonvoisin*, ","doi":"10.1021/acsanm.4c0442610.1021/acsanm.4c04426","DOIUrl":"https://doi.org/10.1021/acsanm.4c04426https://doi.org/10.1021/acsanm.4c04426","url":null,"abstract":"<p >The magnetic and structural properties of an organic film, composed of a β-diketonato complex functionalized with iodine atoms (C<sub>30</sub>H<sub>18</sub>CuI<sub>4</sub>O<sub>4</sub>), deposited on a graphite surface are probed using synchrotron radiation spectroscopies and scanning tunneling microscopy. The Cu<sup>2+</sup> complexes form a halogen-bonded network at the interface, and the molecules in the film preferentially remain parallel to the graphite surface. For a temperature of 2 K, the complex film is paramagnetic; no preferential easy axis of magnetization is detected. The engineering and characterization of organic films composed of molecular magnets is essential for developing novel applications in spintronics and nanomagnetism due to the appealing magnetic and electronic properties of these materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26737–26742 26737–26742"},"PeriodicalIF":5.3,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto López-Ortega*, Beatrice Muzzi*, Cesar de Julián Fernández and Claudio Sangregorio,
{"title":"Competitive Size Effects in Antiferromagnetic|Ferrimagnetic Core|Shell Nanoparticles for Large Exchange Bias","authors":"Alberto López-Ortega*, Beatrice Muzzi*, Cesar de Julián Fernández and Claudio Sangregorio, ","doi":"10.1021/acsanm.4c0550510.1021/acsanm.4c05505","DOIUrl":"https://doi.org/10.1021/acsanm.4c05505https://doi.org/10.1021/acsanm.4c05505","url":null,"abstract":"<p >A family of exchange-coupled core–shell (CS) nanoparticles composed of an antiferromagnetic (AFM) core (Co<sub>0.3</sub>Fe<sub>0.7</sub>O) and a ferrimagnetic (FiM) shell (Co<sub>0.6</sub>Fe<sub>2.4</sub>O<sub>4</sub>) was investigated to unravel the role played by the dimension of the two components on the magnetic properties of the system. The series comprises three samples with different core diameters (2, 5, and 16 nm) and fixed shell thickness of ∼2 nm. Although a strong core and shell magnetic coupling occurs in all the samples, the final properties of the hybrid nanosystems are greatly influenced by the size of the two counterparts. Indeed, while the larger sample can be described as a classic <i>T</i><sub>C</sub> > <i>T</i><sub>N</sub> exchange-bias, where <i>T</i><sub>C</sub> and <i>T</i><sub>N</sub> denote the ordering temperature of the FiM and AFM phases, respectively, on reducing the size, the blocking transition of the FiM shell decreases to values well below the <i>T</i><sub>N</sub> of the AFM. In the first case, the FiM-AFM exchange-bias effect is determined by the magnetic ordering of the AFM core; in the other cases, it is due to the reduction of the thermal-driven magnetic fluctuations of the ordered FiM shell. On the other hand, the AFM properties of the core regions also are extremely sensitive to the particle size reduction, showing, for the smallest sample, the effect of the coupling between the two phases to appear at temperature well below <i>T</i><sub>N</sub> displayed by the bulk system, indicating the potential presence of a blocking transition in the AFM core for small particles. These findings highlight the significant influence of the size of the AFM and FiM components on the hybrid system’s ultimate properties. This result is potentially relevant for defining the working conditions of nanodevices exploiting exchange-bias phenomena, which have been recently proposed in the literature for application in several technological fields, ranging from rare-earth free magnets, spintronics, optoelectronics, and magnetic-refrigeration.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27489–27497 27489–27497"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142850429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixuan Wu, Qian Yang, Jiadong Chen, Liyan Bi, Zhiyang Zhang, Na Zhou, Abbas Ostovan, Maryam Arabi, Lingxin Chen* and Jaebum Choo*,
{"title":"Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Strips Using Highly Symmetric Gold Nanostars","authors":"Yixuan Wu, Qian Yang, Jiadong Chen, Liyan Bi, Zhiyang Zhang, Na Zhou, Abbas Ostovan, Maryam Arabi, Lingxin Chen* and Jaebum Choo*, ","doi":"10.1021/acsanm.4c0515110.1021/acsanm.4c05151","DOIUrl":"https://doi.org/10.1021/acsanm.4c05151https://doi.org/10.1021/acsanm.4c05151","url":null,"abstract":"<p >The applications for lateral flow assay (LFA) strips in point-of-care testing have been significantly constrained by their insufficient sensitivity and reproducibility. To address these inherent issues, we developed surface-enhanced Raman scattering (SERS)-based LFA strips, in which highly symmetric Au nanostars (Sym-AuNS) were employed as the sensing element. Due to the uniform tip-sharp nanostructure and a certain number of branches on the surface of Sym-AuNS, it generates a uniform hotspot distribution, thus producing a strong and stable SERS signal. As a proof of concept, human IgG was chosen as the target to evaluate the performance of the proposed SERS-LFA strips. In human serum spiked samples, the limit of detection for human IgG detection was achieved as low as 38 ng/mL, which exhibited a 2-fold, 3-fold, and 13-fold sensitivity improvement compared with the SERS-LFA strips using conventional gold nanostars (AuNS), enzyme-linked immunosorbent assays (ELISA), and the conventional LFA strips, respectively. Furthermore, the SERS-LFA strips demonstrated high assay reproducibility, with a relative standard deviation of 7.75% for five repeated tests, much lower than those of SERS-LFA strips using AuNS (24.6%), ELISA (12.42%), and conventional LFA strips (31.32%). These results demonstrate that the construction of sensitive and reproducible SERS-LFA strips was obtained, and this platform using Sym-AuNS as SERS nanoparticles paves the way for a promising approach in immunoassay technology.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27134–27141 27134–27141"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kunal Roy, Navya Rani M*, Manikanta Palya Narayanaswamy, Tathagata Sardar, Vidyashankar S and Dinesh Rangappa*,
{"title":"Rapid and Direct Conversion of the Ti3AlC2 MAX Phase to Ti3C2Tx MXene Nanosheets by a Supercritical Water-Assisted Etching Process","authors":"Kunal Roy, Navya Rani M*, Manikanta Palya Narayanaswamy, Tathagata Sardar, Vidyashankar S and Dinesh Rangappa*, ","doi":"10.1021/acsanm.4c0561210.1021/acsanm.4c05612","DOIUrl":"https://doi.org/10.1021/acsanm.4c05612https://doi.org/10.1021/acsanm.4c05612","url":null,"abstract":"<p >Currently, two-dimensional MXenes have become a quest for the synthesis bottlenecks by the conventional process due to slow etching reaction of the bulk MAX phase, use of hazardous chemicals, and laborious methods. Herein, we demonstrate a one-step rapid conversion of the Ti<sub>3</sub>AlC<sub>2</sub> MAX phase to Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanosheets on the order of few minutes using supercritical water. The process is demonstrated to remove the metallic aluminum interlayers from the MAX phase material with the help of a lowest-concentrated hydrofluoric acid (HF) etchant up to 4 vol % instead of 40–50 vol %. Furthermore, the conversion achieves as high as ≈61% yield within a short reaction time of 30 min at a temperature of 400 °C. Thereafter, the synthesized MXene is used to measure the electrochemical performance for both three-electrode and two-electrode supercapacitors as well as Li-ion battery applications. The high electrochemical specific capacitance of 271.3 F·g<sup>–1</sup> at 0.75 A·g<sup>–1</sup> in a two-electrode system is found for the supercapacitor. Additionally, the specific capacity of 120 mAh·g<sup>–1</sup> at 1 C is obtained for Li-ion battery performance with 87% of Coulombic efficiency. The properties are then compared with those of conventionally prepared MXene, showing to be essentially comparable. This demonstrates that MXenes do not undergo adverse changes in structure or properties while synthesized rapidly and scaling. Thus, it can make them viable for further scale-up and commercialization in forthcoming days.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27628–27639 27628–27639"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142850053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenyang Zhang, Jiahang Su, Chuanying Yao, Shengjiong Nie, Zelin Zhou and Zhenyu Li*,
{"title":"Carbon Fiber/Methyltrimethoxysilane/Graphene Composite Aerogel for High-Strength Strain Sensors","authors":"Chenyang Zhang, Jiahang Su, Chuanying Yao, Shengjiong Nie, Zelin Zhou and Zhenyu Li*, ","doi":"10.1021/acsanm.4c0529310.1021/acsanm.4c05293","DOIUrl":"https://doi.org/10.1021/acsanm.4c05293https://doi.org/10.1021/acsanm.4c05293","url":null,"abstract":"<p >Because of their special physical characteristics, graphene aerogels have been produced for sensing applications; nevertheless, their lack of mechanical features prevents them from being used further. In this study, a hydrophobic carbon-fiber and methyltrimethoxysilane-reinforced graphene composite aerogel (aCF-MGA) with a three-dimensional interconnected hierarchical microstructure was designed and developed by a freeze-drying process with a distinct honeycomb structure. Methyltrimethoxysilane (MTMS) and graphene oxide (GO) create a dense interlayer porous network and solid-layered structure through covalent cross-linking and hydrogen bonding. Because alkali-treated carbon fiber (aCF) offers strong mechanical support, aCF-MGA aerogel has exceptional mechanical qualities and a distinctive “porous honeycomb” structure. The aCF-MGA aerogel-based sensor is capable of detecting a wide range of motion signals in compression, because of the synergistic effect of multiple substances. It has a high sensitivity of 27.34 kPa<sup>–1</sup> and excellent properties like ultrahigh elasticity, ultralight density (4.5 mg/cm<sup>3</sup>), highly conductive (2.85 S/cm), high fatigue compression resistance (10,000 cycles), extremely short response time (96 ms), and short relaxation time (68 ms). This enables them to detect a variety of motion signals and implies that the aCF-MGA aerogel may find use in human–machine interaction and sports health monitoring as a possible material for wearable protection devices and piezoresistive sensors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27299–27308 27299–27308"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142842085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Maier, Qi Jia, Keshav Shukla, Achim Iulian Dugulan, Peter-Leon Hagedoorn, Rogier van Oossanen, Gerard van Rhoon, Antonia G Denkova, Kristina Djanashvili
{"title":"Enhancing Magnetic Hyperthermia Efficiency in Pd/Fe-Oxide Hybrid Nanoparticles through Mn-Doping.","authors":"Alexandra Maier, Qi Jia, Keshav Shukla, Achim Iulian Dugulan, Peter-Leon Hagedoorn, Rogier van Oossanen, Gerard van Rhoon, Antonia G Denkova, Kristina Djanashvili","doi":"10.1021/acsanm.4c05452","DOIUrl":"10.1021/acsanm.4c05452","url":null,"abstract":"<p><p>Multifunctional, biocompatible magnetic materials, such as iron oxide nanoparticles (IONPs), hold great potential for biomedical applications including diagnostics (e.g., MRI) and cancer therapy. In particular, they can play a crucial role in advancing cancer thermotherapy by generating heat when administered intratumorally and when exposed to an alternating magnetic field. This heat application is often combined with radio- (chemo)therapy and/or imaging. Consequently, the design of materials for such a multimodal approach requires hybrid nanoparticles that retain their magnetic properties while integrating additional functionalities. This work introduces synthesis and investigation of magnetically enhanced nanoparticles with a palladium core (envisioned for future radiolabeling with therapeutic <sup>103</sup>Pd) and a magnetic iron oxide shell containing paramagnetic manganese (Pd/Fe|(nMn)-oxide, <i>n</i> = 0.25 and 0.5). Doping the iron oxide lattice with Mn significantly increases magnetic saturation, boosting specific loss power up to 1.7 times compared to that of undoped analogs. Interestingly, higher Mn-content in Pd/Fe|(0.5Mn)-oxide leads to a pronounced Mn outer rim, enhancing the heating efficiency at 346 kHz and 23 mT and contributing to the water exchange on the surface of the paramagnetically doped nanoparticles, resulting in additional <i>T</i> <sub>1</sub> MRI contrast. The enhanced magnetic properties of the hybrid Pd/Fe|Mn-oxide nanoparticles enable effective therapeutic outcomes with injection of only small quantities of the material, offering great potential for effective cancer treatment strategies that combine hyperthermia/thermal ablation with radiotherapy while allowing for real-time monitoring via MRI.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27465-27475"},"PeriodicalIF":5.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}