{"title":"Flower-like carbon and their composites for electrochemical energy storage and conversion","authors":"","doi":"10.1016/j.rser.2024.114973","DOIUrl":"10.1016/j.rser.2024.114973","url":null,"abstract":"<div><div>The inspiration for the preparation of flower-like carbon materials comes from the shape of flowers, based on biomimicry. They have been used extensively in the field of energy storage and conversion. Unlike other morphologies such as spherical carbon, flower-like carbon materials are characterized by surfaces filled with large pores and channels formed by stacked lamellar structures. These open spaces not only provide a larger specific surface area but also offer support and anchoring for the doping and compositing of materials. Compared to hollow structures, the exposure of these active sites is significantly increased. The stacked lamellar structure also facilitates the dispersion and protection of catalysts, providing an effective solution to the expansion and aggregation of active materials in the field of energy storage and conversion. This paper critically summarizes the synthesis methods of flower-like carbon and its composite materials. While hydrothermal synthesis offers mild conditions, limited reactant choices, and insufficient understanding of reaction mechanisms constrain product structure and performance. Hard template methods enable precise control over material morphology but incur higher costs and lower environmental benefits. Soft template and self-assembly methods simplify ordered flower-like structure synthesis, yet require strict conditions and control. Applications of flower-like carbon materials are still a long way to go for industrialization. Challenges remain in precisely controlling the morphology of flower-like carbon materials while balancing environmental and economic benefits. More research is needed to maximize the benefits of flower-shaped carbon materials in composite synthesis, including understanding how to combine them with other substances effectively.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven J. Peters, Sean H. Kennedy, Colton J. Christiansen
{"title":"Biaryl Anion Radical Formation by Potassium Metal Reduction of Aryl Isocyanates and Triaryl Isocyanurates","authors":"Steven J. Peters, Sean H. Kennedy, Colton J. Christiansen","doi":"10.1021/acs.joc.4c01844","DOIUrl":"https://doi.org/10.1021/acs.joc.4c01844","url":null,"abstract":"The potassium metal reduction of aryl isocyanates (aryl = phenyl, <i>p</i>-tolyl, 3,5-dimethylphenyl, 4-biphenylyl, and 1-naphthyl) in THF with 18-crown-6 or in HMPA results in the formation of the corresponding triaryl isocyanurate anion radicals. Continued exposure to potassium results in loss of the isocyanurate anion radical and the eventual formation of the respective biaryl anion radical. The 1,1′-binaphthyl anion radical is found to undergo a cyclodehydrogenation reaction, which leads to formation of the perylene anion radical. When authentic triaryl isocyanurates are reduced with metal, the heterocyclic ring undergoes fragmentation with elimination of carbon monoxide to produce a triarylbiuret dianion. This ring opening reaction is initiated by the two-electron reduction of the neutral isocyanurate species. The biaryl anion radical is formed when the biuret dianion is reduced further with metal. A possible mechanism for biaryl formation involves a heterolytic cleavage of an aryl C–N bond and release of an aryl radical once the triarylbiuret dianion is further reduced. A subsequent intermolecular reaction between two aryl radicals forms the corresponding biaryl, which can then be reduced to the anion radical. Notably, when a mixture of two different triaryl isocyanurate compounds is reduced in solution, the corresponding mixed biaryl anion radical is generated.","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.354,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detecting energy consumption anomalies with dynamic adaptive encoder-decoder deep learning networks","authors":"","doi":"10.1016/j.rser.2024.114975","DOIUrl":"10.1016/j.rser.2024.114975","url":null,"abstract":"<div><div>Efficient management of building energy consumption is paramount for sustainability and cost-effectiveness, where anomalies in energy usage patterns can signify malfunctions, inefficiencies, or even potential hazards within the building systems. To address this problem, this study introduces an Asymmetric Hybrid Encoder-Decoder (AHED) anomaly detection architecture, designed to precisely forecast and identify point anomalies and collective anomalies within the domain of building energy usage. This architecture synthesizes both supervised and unsupervised learning approaches and utilizes an advanced decoder-encoder configuration for accurate prediction of energy consumption. Concurrently, the AHED framework applies sliding window techniques and cross-correlation analysis to convert multivariate temporal data into feature matrices, to detect anomalous patterns that manifest collectively within specified time intervals. The results demonstrate that the AHED model outperforms traditional anomaly detection techniques, achieving higher accuracy and improved generalization across diverse building environments, which affirms the efficacy and superiority of the asymmetric model in anomaly detection for building energy consumption. This study underscores the potential of dynamic adaptive deep learning networks in addressing the challenges of anomaly detection in building energy management, paving the way for more efficient and sustainable building operations.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of explicit models for photovoltaic cell electrical characterization","authors":"","doi":"10.1016/j.rser.2024.114979","DOIUrl":"10.1016/j.rser.2024.114979","url":null,"abstract":"<div><div>For modeling solar cells, the single diode model presents difficulties in implementation and is expensive computationally because it involves a transcendental and implicit mathematical equation. Some authors have proposed explicit, easy-to-use, and computationally efficient models that approximate its behavior. It is challenging to select the proper model for each specific application because the different proposals were tested for different solar panels, operating conditions, and performance metrics, and, therefore, a direct comparison based on the published information is not possible. In this study, the existing explicit models are reviewed, presenting their equations and discussing their mathematical approximations. Four new models are introduced, and a classification of models is proposed. Furthermore, a comparative analysis of all the models under many photovoltaic technologies and operating conditions is carried out using the same performance metrics and parameter extraction method. This allows developing a framework that makes the selection of models easier for each application. The comparative results show that three models proposed by the research team are more accurate than the implicit approach, with average root mean squared errors as low as 0.41 % (versus 0.54 % error of the implicit model). However, the parameters in these models lack physical sense. Among the explicit models incorporating physical parameters and formulated with elementary functions, the most accurate is based on a first order Padé approximation (0.55 % error). The ranking of models is expected to become a valuable tool for the photovoltaic community in various solar cell modeling tasks.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Holistic opportunistic maintenance scheduling and routing for offshore wind farms","authors":"","doi":"10.1016/j.rser.2024.114991","DOIUrl":"10.1016/j.rser.2024.114991","url":null,"abstract":"<div><div>Despite the high growth of the offshore wind market, the economic benefits of wind energy sources are still being undermined by its high operation and maintenance expenses. On the one hand, high maintenance expenses are a direct result of offshore-specific challenges such as complex ocean meteorology, varying vessel accessibility, and shifting transportation requirements. Besides, component degradation and weather conditions largely limit the ability of turbine operators to estimate a workable maintenance time window. This study aims to develop a holistic opportunistic maintenance strategy to address the practical challenges of offshore wind farms. The proposed strategy starts by deriving the preventive maintenance interval of each turbine component based on its degradation trend and predictable cost rates. Then, each turbine is maintained in groups based on the maintenance opportunities arising from preventive maintenance, unexpected failures, and cable damage. Following that, given weather condition forecasts of key parameters (wind speed and wave height), the proposed strategy optimizes the daily allocations and vessel routes to maintain turbines in a timely and cost-effective manner. Finally, experimental results based on real-world data from an actual offshore wind farm demonstrate that the proposed strategy outperforms several universal maintenance strategies in key metrics. Compared to the simple, widely employed, and easy-to-implement strategies, it can help reduce the total cost by 85.9 %, 65.9 %, and 41.6 %, respectively. This work helps turbine operators implement comprehensive and cost-effective maintenance schemes, which can lead to tariff duction and wind farm promotion benefits in the long term.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methane Production Is More Sensitive to Temperature Increase than Aerobic and Anaerobic Methane Oxidation in Chinese Paddy Soils","authors":"Wang-ting Yang, Evgenios Agathokleous, Jiang-hua Wu, Hong-yang Chen, Rong-jun Wu, He-chen Huang, Bing-jie Ren, Si-le Wen, Li-dong Shen, Wei-qi Wang","doi":"10.1021/acs.est.4c04494","DOIUrl":"https://doi.org/10.1021/acs.est.4c04494","url":null,"abstract":"Methane emissions from paddy fields can increase under future warming scenarios. Nevertheless, a comprehensive comparison of the temperature sensitivity of methane-related microbial processes remains elusive. Here, we revealed that the temperature sensitivity of methane production (activation energy (<i>E</i><sub>a</sub>) = 0.94 eV; 95% confidence interval (CI), 0.78–1.10 eV) and aerobic (<i>E</i><sub>a</sub> = 0.49 eV; 95% CI, 0.34–0.65 eV) and anaerobic (<i>E</i><sub>a</sub> = 0.46 eV; 95% CI, 0.30–0.62 eV) methane oxidation exhibited notable spatial heterogeneity across 12 Chinese paddy fields spanning 35° longitude and 18° latitude. In addition, the <i>E</i><sub>a</sub> values of aerobic and anaerobic methane oxidation were significantly positively and negatively correlated to the latitude, respectively, while there was no significant correlation between the <i>E</i><sub>a</sub> of methane production and the latitude. Overall, there were no soil factors that had a significant effect on the <i>E</i><sub>a</sub> of methane production. The <i>E</i><sub>a</sub> of aerobic methane oxidation was primarily influenced by the contents of ammonium and clay, whereas the <i>E</i><sub>a</sub> of anaerobic methane oxidation was mainly influenced by the conductivity. Despite the variation, the overall temperature sensitivity of methane production was significantly higher than that of oxidation at a continental scale; therefore, an increase in the emission of methane from paddy fields will be predicted under future warming. Taken together, our study revealed the characteristics of temperature sensitivity of methane production and aerobic and anaerobic methane oxidation simultaneously in Chinese paddy fields, highlighting the potential roles of soil factors in influencing temperature sensitivity.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":9.028,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A meta-analysis of pathogen reduction data in anaerobic digestion","authors":"","doi":"10.1016/j.rser.2024.114982","DOIUrl":"10.1016/j.rser.2024.114982","url":null,"abstract":"<div><div>Anaerobic digestion (AD)-derived digestate can be used as an organic fertilizer or for soil amendment. However, its utilization for resource recovery raises valid biosafety concerns. Despite extensive research on the capacity of AD for pathogen reduction, the variability in results poses challenges for drawing definitive conclusions. To address this lack of unification, results from 121 scientific articles were compiled, and a comprehensive meta-analysis was conducted. Findings indicate that artificial pathogen spiking leads to performance overestimation. Current most common indicators represent accurately their respective microbial groups. <em>Clostridiaceae</em> are barely affected by AD and may be favored by some pre-treatment technologies. The impact of operational parameters and the coupling of pre- and post-treatments with AD on pathogen reduction was also investigated. While an optimal batch duration was identified, the hydraulic retention time in (semi)continuous systems did not affect the overall pathogen reduction. Heat-based post-treatments coupled with thermophilic AD resulted in the highest pathogen reductions, fulfilling legislations. Unprecedented statistical analyses allowed categorizing quantitatively key parameters. Results confirmed that temperature is the most relevant parameter. Thermophilic conditions resulted in the highest pathogen reductions, while psychrophilic and mesophilic temperatures showed similar performances. The impact of pH on pathogen removal was confirmed, with acidic and basic values enhancing pathogen reductions. More research considering all AD products within a multicriteria optimization approach (e.g., pathogen reduction, biogas production, and digestate quality) is needed to determine optimal conditions considering all aspects. This study provides novel and relevant conclusions for AD at research and industrial scale, drawing several R&D perspectives.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The influence of national cultures on preferences and willingness to pay for renewable energy in Developing countries: A meta-analysis","authors":"","doi":"10.1016/j.rser.2024.114972","DOIUrl":"10.1016/j.rser.2024.114972","url":null,"abstract":"<div><div>Many developing nations are among the most vulnerable to the impact of global warming, and they suffer from frequent electricity outages and inadequate access to electricity supply. To improve energy security and ensure a sustainable future, governments in developing nations design various policies to expand renewable energy targets. Understanding public preferences towards renewables is a vital step in formulating effective policies. This study provides the first comprehensive synthesis of consumers’ preferences and willingness to pay for green electricity and examine the effect of cultural dimensions and other factors on willingness to pay by conducting a meta-analysis of 883 estimates reported in 98 studies from 29 developing countries. The findings indicate that societies characterised by greater uncertainty avoidance are less likely to support renewables. Electricity generated from solar energy is favoured over that from other renewables. Further, green electricity is classified as a normal good, and estimates of willingness to pay rise with increasing latitudinal positions.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solar tower power generation under future attenuation and climate scenarios","authors":"","doi":"10.1016/j.rser.2024.114997","DOIUrl":"10.1016/j.rser.2024.114997","url":null,"abstract":"<div><div>This work presents a novel analysis of the potential impact of atmospheric attenuation in the performance of solar tower plants for future climate change scenarios (2030–2060). Atmospheric attenuation has been estimated from aerosol optical depth information in CMIP6 climatic models for several scenarios (optimistic and pessimistic in terms of mitigation actions taken). Atmospheric attenuation data derived from CMIP6 models was evaluated using the extensive and reliable experimental database at PSA (Plataforma Solar de Almería). Detailed modeling of a solar tower plant is also performed for the conditions at PSA showing a decrease in annual power production less than 2 % for 2030–2060 period. A global impact of atmospheric attenuation is analyzed in relative terms and global maps of future attenuation shows the specific regions more adversely affected in the optimistic and pessimistic future scenarios. According to impact of atmospheric attenuation in solar field efficiency, these results may help in the future planning of deployment for solar tower plants.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsettling mainstream academic debates on community-based energy governance: Exploring the Japanese experience","authors":"","doi":"10.1016/j.rser.2024.114994","DOIUrl":"10.1016/j.rser.2024.114994","url":null,"abstract":"<div><div>Community-based energy governance (CEG), in which citizens or communities play a central role, has attracted sufficient attention in the context of efforts to achieve a democratic and just energy transition. Despite this surge of interest, however, a crucial limitation of the CEG literature is that its conceptualisation relies mainly on the analyses of case studies and literature from North Western Europe. To address this geographic bias, this paper conducts a rigorous review of Japanese debates on CEG, shedding new light on how the first-hand experience of the Fukushima nuclear power plant accident in 2011 has led to new dialogues, based on its domestic interdisciplinary traditions to tackle environmental pollution in Japan. The analysis shows that the challenges addressed by CEG can vary across geographical contexts. CEG in Japan has, first and foremost, been understood as an alternative to the “exogenous” or “colonial” regional development underlying the Japanese energy system. Here, community has been approached as a starting point to address the geographical economic disparity that exists in the existing energy system, by attaining “endogenous development” and “energy autonomy”. The analysis, therefore, provides an alternative perspective for the critical scrutiny of dominant approaches towards CEG in “Western” tradition, while pointing to the need for further in-depth inquiry into the articulation of CEG in Japan and beyond.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}