Biosensors and Bioelectronics最新文献

筛选
英文 中文
Wearable electrochemical immunosensor based on ultra-thin flexible stainless steel sheets for detection of methyl jasmonate in tomato leaves. 基于超薄柔性不锈钢片的可穿戴电化学免疫传感器检测番茄叶片中茉莉酸甲酯。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-15 Epub Date: 2025-08-05 DOI: 10.1016/j.bios.2025.117853
Yali Zhang, Xinliu Geng, Linbing Ma, Mengting Li, Xinyue Zhao, Ling Sun, Rong Tan, Lijun Sun
{"title":"Wearable electrochemical immunosensor based on ultra-thin flexible stainless steel sheets for detection of methyl jasmonate in tomato leaves.","authors":"Yali Zhang, Xinliu Geng, Linbing Ma, Mengting Li, Xinyue Zhao, Ling Sun, Rong Tan, Lijun Sun","doi":"10.1016/j.bios.2025.117853","DOIUrl":"10.1016/j.bios.2025.117853","url":null,"abstract":"<p><p>Methyl jasmonate (MeJA), a key plant hormone, plays essential roles in plant growth, development, biotic stress responses, and wound-induced defense. Monitoring dynamic changes in MeJA in situ is vital for botanical research. Herein, coupling with paper-based analytical devices, the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity were used to develop wearable electrochemical immunosensor for in situ and continuous detection of MeJA in plants. The ultra-thin flexible stainless steel sheets were modified with conducting carbon cement, ferrocene - graphene oxide - multi-walled carbon nanotubes composites, and MeJA antibodies to construct the wearable electrochemical immunosensor, which can detect the MeJA in the range of 10 pM-100 μM, and with a limit of detection of 5.4 pM. Using this wearable electrochemical immunosensor, the MeJA content in tomato leaves under wound stimulation was detected in situ and continuously. The results showed that MeJA levels in tomato leaves increased significantly with mechanical damage. A significant difference was observed between the untreated control group (0 cm) and the mechanically damaged group (2.0 cm), confirming the sensor's capability to monitor dynamic changes in MeJA in response to stress in real-time. In all, this study not only suggested that the ultra-thin flexible stainless steel sheets with the excellent flexibility and conductivity can be used to fabricated the wearable electrochemical sensors, but also provided a novel method for continuous in situ MeJA detection, which contributed to the understanding of MeJA regulatory mechanisms in plants and advancing precision agriculture technologies.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117853"},"PeriodicalIF":10.5,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144797766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel thermo-activated one-pot RPA-CRISPR-Cas12b assay for Mycoplasma pneumoniae POCT. 一种新型的热激活单锅RPA-CRISPR-Cas12b检测肺炎支原体POCT。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-15 Epub Date: 2025-07-29 DOI: 10.1016/j.bios.2025.117839
Jiayu Feng, Ze Wu, Wenhui Zhu, Fei Jin, Minghai Zhao, Wenjie Zhong, Chen Dai, Yongjian He, Lizhi Yan, Shengquan Wu, Yuhang Wang, Yongyu Rui, Lei Zheng, Qiangqiang Fu
{"title":"A novel thermo-activated one-pot RPA-CRISPR-Cas12b assay for Mycoplasma pneumoniae POCT.","authors":"Jiayu Feng, Ze Wu, Wenhui Zhu, Fei Jin, Minghai Zhao, Wenjie Zhong, Chen Dai, Yongjian He, Lizhi Yan, Shengquan Wu, Yuhang Wang, Yongyu Rui, Lei Zheng, Qiangqiang Fu","doi":"10.1016/j.bios.2025.117839","DOIUrl":"10.1016/j.bios.2025.117839","url":null,"abstract":"<p><p>Mycoplasma pneumoniae (M. pneumoniae), a major human respiratory pathogen, necessitates the development of rapid point-of-care testing (POCT) platforms for clinical management. However, current two-step workflows suffer from operational complexity and aerosol contamination risks. This limitation stems from CRISPR-Cas12 mediated template degradation in single-reaction systems, which compromises amplification efficiency and detection sensitivity. Here, we combined RPA and CRISPR Cas12b by leveraging the difference in their optimal temperatures to construct a novel TRACER (Thermo-activated RPA Amplification for CRISPR-Cas12b Efficient Recognition) technology. Through precise temperature modulation, TRACER sequentially executes isothermal amplification and CRISPR-mediated detection while preventing premature template cleavage, thereby maintaining optimal reaction efficiency. The platform demonstrates exceptional analytical sensitivity with a detection limit of 1 copy/μL, representing a 100-fold improvement over conventional one-pot RPA-CRISPR-Cas12a systems. Clinical validation using 195 specimens revealed diagnostic performance metrics of 99.2 % sensitivity (119/120), 100.0 % specificity (75/75), and 99.5 % accuracy (194/195). This innovative combination of single-tube reaction, field-deployable instrumentation, and cost-effectiveness establishes TRACER as an ideal POCT solution for M. pneumoniae detection in diverse clinical settings.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117839"},"PeriodicalIF":10.5,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An artificial intelligence-assisted, kilometer-scale wireless and wearable biochemical sensing platform for monitoring of key biomarkers in urine. 一种人工智能辅助的、公里级无线可穿戴生化传感平台,用于监测尿液中的关键生物标志物。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-15 Epub Date: 2025-08-05 DOI: 10.1016/j.bios.2025.117844
Yan Dong, Wenzheng An, Yongbin Zhang, Zehao Kang, Botao Gao, Juntai Lv, Yixuan Jiang, Chang Niu, Yuling Mao, Dongzhi Zhang
{"title":"An artificial intelligence-assisted, kilometer-scale wireless and wearable biochemical sensing platform for monitoring of key biomarkers in urine.","authors":"Yan Dong, Wenzheng An, Yongbin Zhang, Zehao Kang, Botao Gao, Juntai Lv, Yixuan Jiang, Chang Niu, Yuling Mao, Dongzhi Zhang","doi":"10.1016/j.bios.2025.117844","DOIUrl":"10.1016/j.bios.2025.117844","url":null,"abstract":"<p><p>Wearable biochemical sensors enabling non-invasive monitoring of biomarkers in bodily fluids play a pivotal role in advancing personalized healthcare. The state-of-the-art wireless and wearable biochemical sensors still suffer from large form factors, poor detection accuracy due to sample-to-sample variation, short and weak wireless communication, and difficulty to integrate with data processing algorithm on a system level. To solve these problems, this work develops an all-range wireless and wearable biochemical sensing platform which can be integrated in a diaper for monitoring four urine biomarkers (dimethylamine, creatinine, glucose, and H<sup>+</sup>) with two switchable wireless modes. To simplify the circuit design and reducing the form factor of the wearable sensing platform, this work develops flexible and passive potentiometric sensing interfaces for dimethylamine and creatinine detection by developing high-performance ion-selective electrode (ISE) with customized molecularly imprinted polymers (MIPs) as ionophores. The narrowband Internet of Things (NB-IoT) far-field wireless mode enables remote, and concurrent monitoring of urine biomarkers with a working range up to tens of kilometers, while the LC resonance near-field wireless mode is capable of battery-free and intermittent detection of urine biomarkers. The wearable sensor can be easily switched between the NB-IoT far-field wireless mode and the near-field wireless mode to fit different application scenarios. The wireless sensing platform enables system level integration of the wearable biochemical sensor with a multilayer perceptron data calibration system for data auto-calibration, which reduces the errors caused by varying pH and thus improves the detection accuracy, enabling deeper AI-wearable biochemical sensor fusion for next-generation healthcare applications.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117844"},"PeriodicalIF":10.5,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas13a-driven lateral flow assay for preamplification-free and ultrasensitive miRNA-21 detection. CRISPR/ cas13a驱动的横向流动试验用于无预扩增和超灵敏的miRNA-21检测。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-15 Epub Date: 2025-08-05 DOI: 10.1016/j.bios.2025.117850
Yan Zhu, Junwei Lai, Xinyao Yang, Shuqing Wang, Dayong Gu, Yan Huang, Yizhen Liu, Conghui Liu
{"title":"CRISPR/Cas13a-driven lateral flow assay for preamplification-free and ultrasensitive miRNA-21 detection.","authors":"Yan Zhu, Junwei Lai, Xinyao Yang, Shuqing Wang, Dayong Gu, Yan Huang, Yizhen Liu, Conghui Liu","doi":"10.1016/j.bios.2025.117850","DOIUrl":"10.1016/j.bios.2025.117850","url":null,"abstract":"<p><p>Developing a preamplification-free and sensitive clustered regularly interspaced short palindromic repeats (CRISPR)-based method is significant but still extremely challenging for microRNA (miRNA) detection. Here we present a combination of a CRISPR/Cas13a-based reaction with a lateral flow biosensor, which enables the quantitative and colorimetric readout of preamplification-free miRNA detection at room temperature. In this work, the reaction principle and the structure of the lateral flow strip are well-designed to achieve surface-enhanced Raman scattering (SERS)/colorimetric dual-signal \"turn-on\" response of target miRNA. The CRISPR/Cas13a Reporter is engineered with a DNA-RNA splicing structure to generate DNA cleavage products and reduce nonspecific collateral cleavage. Without the need for nucleic acid preamplification strategy, the developed CRISPR/Cas13a-driven lateral flow biosensor enables the microRNA-21 (miR-21) detection at room temperature with a readout time of 10 min and a total process time of less than 45 min, achieving an impressive limit of detection of 8.96 aM by SERS and 1 fM by visualization, respectively. Moreover, the platform demonstrated excellent recovery rates in spiked human serum samples. The proposed CRISPR/Cas13a-driven, dual-signal \"turn-on\"-responded lateral flow platform has the potential to simultaneously meet the requirements of convenient point-of-care visualization detection and more accurate and sensitive SERS detection of miR-21, offering a cost-effective, rapid, and reliable tool for early cancer diagnosis.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117850"},"PeriodicalIF":10.5,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SERS-based miniaturized biosensors for alkaline phosphatase detection: Towards intelligent, real-time diagnostics in precision medicine. 用于碱性磷酸酶检测的基于sers的微型生物传感器:在精准医学中实现智能、实时诊断。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-15 Epub Date: 2025-08-05 DOI: 10.1016/j.bios.2025.117793
Ajitesh Dhal, Ana Elena Aviña, Cheng-Jen Chang, Chang-I Chen, Tzu Sen Yang
{"title":"SERS-based miniaturized biosensors for alkaline phosphatase detection: Towards intelligent, real-time diagnostics in precision medicine.","authors":"Ajitesh Dhal, Ana Elena Aviña, Cheng-Jen Chang, Chang-I Chen, Tzu Sen Yang","doi":"10.1016/j.bios.2025.117793","DOIUrl":"10.1016/j.bios.2025.117793","url":null,"abstract":"<p><p>Alkaline phosphatase (ALP) is a clinically important hydrolase enzyme and a valuable biomarker for hepatobiliary diseases, metabolic bone disorders, and certain malignancies. Raman-based miniaturized sensors, particularly those employing surface-enhanced Raman scattering (SERS), have enabled ultrasensitive and selective ALP detection at femtomolar to picomolar levels in complex biological samples. This narrative review critically examines recent advances in SERS-enabled ALP sensors, highlighting hotspot engineering, nanozyme-assisted signal amplification, and microfluidic integration to achieve high-throughput, low-volume assays. It also explores the incorporation of artificial intelligence algorithms for real-time spectral interpretation and discusses the potential for integrating these systems with fifth and sixth generation (5G/6G) wireless networks for rapid, cloud-based diagnostics. In addition, this review outlines current challenges, including substrate reproducibility and standardization issues, and proposes strategies to enhance clinical translation. Collectively, these developments are transforming ALP sensing by enabling decentralized, intelligent, and personalized diagnostic platforms, which hold promise for advancing precision healthcare and improving patient outcomes.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"288 ","pages":"117793"},"PeriodicalIF":10.5,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144803044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme" [Biosens. Bioelectron. 270 (2025) 116963]. “基于上转换纳米酶的crispr - cas12a介导的双模式发光和比色核酸生物传感平台”的勘误表[Biosens]。生物电子学学报,2015(5):391 - 391。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-01 Epub Date: 2025-07-05 DOI: 10.1016/j.bios.2025.117738
Jiaxiang Yan, Bohan Yin, Qin Zhang, Chuanqi Li, Jiareng Chen, Yingying Huang, Jianhua Hao, Changqing Yi, Yu Zhang, Siu Hong Dexter Wong, Mo Yang
{"title":"Corrigendum to \"A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme\" [Biosens. Bioelectron. 270 (2025) 116963].","authors":"Jiaxiang Yan, Bohan Yin, Qin Zhang, Chuanqi Li, Jiareng Chen, Yingying Huang, Jianhua Hao, Changqing Yi, Yu Zhang, Siu Hong Dexter Wong, Mo Yang","doi":"10.1016/j.bios.2025.117738","DOIUrl":"10.1016/j.bios.2025.117738","url":null,"abstract":"","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":" ","pages":"117738"},"PeriodicalIF":10.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144566883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Development of a universal one-pot CRISPR assay based on multifunctional tagged primer eliminating unstable crRNA input and PAM dependency for point-of-care detection of bacterial infections" [Biosens. Bioelectron. 287 (2025) 117718]. “基于多功能标记引物消除不稳定的crRNA输入和PAM依赖,用于即时检测细菌感染的通用一罐CRISPR测定的开发”的勘误表[Biosens]。生物电子学学报,2004,12(2):357 - 357。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-01 Epub Date: 2025-07-04 DOI: 10.1016/j.bios.2025.117742
Xiaofan Zhu, Jingran Jiao, Qun Ni, Li Yao, Yule Zhang, Kaiyong Liu, Lin Huang, Qingli Bo, Panzhu Qin
{"title":"Corrigendum to \"Development of a universal one-pot CRISPR assay based on multifunctional tagged primer eliminating unstable crRNA input and PAM dependency for point-of-care detection of bacterial infections\" [Biosens. Bioelectron. 287 (2025) 117718].","authors":"Xiaofan Zhu, Jingran Jiao, Qun Ni, Li Yao, Yule Zhang, Kaiyong Liu, Lin Huang, Qingli Bo, Panzhu Qin","doi":"10.1016/j.bios.2025.117742","DOIUrl":"10.1016/j.bios.2025.117742","url":null,"abstract":"","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":" ","pages":"117742"},"PeriodicalIF":10.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144564200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferrocene derivatives constructed Prussian blue analogs for colorimetric detection of hydrogen peroxide and glucose. 二茂铁衍生物构建的普鲁士蓝类似物用于过氧化氢和葡萄糖的比色检测。
IF 10.7 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-11-01 Epub Date: 2025-06-25 DOI: 10.1016/j.bios.2025.117714
Yue Tong, Qian Liu, Dan Yang, Chunze Zhang, Yi Xiao, Mengying Shi, Meng Meng, Huixia Di, Hongmei Gao, Rimo Xi, Yongmei Yin
{"title":"Ferrocene derivatives constructed Prussian blue analogs for colorimetric detection of hydrogen peroxide and glucose.","authors":"Yue Tong, Qian Liu, Dan Yang, Chunze Zhang, Yi Xiao, Mengying Shi, Meng Meng, Huixia Di, Hongmei Gao, Rimo Xi, Yongmei Yin","doi":"10.1016/j.bios.2025.117714","DOIUrl":"10.1016/j.bios.2025.117714","url":null,"abstract":"<p><p>This study reports the rational design of ferrocene-derived Prussian blue analogs (PBAs) as a new class of nanozymes with enhanced catalytic properties. Capitalizing on its high peroxidase-like activity, we developed a colorimetric assay for detecting hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and glucose, which exhibited high stability, sensitivity, and accuracy in biological samples such as serum. Furthermore, by leveraging the reversible structural dynamics of Fc(COOH)<sub>2</sub>-PBA, we engineered a dual-mode colorimetric assay for visual quantitation of H<sub>2</sub>O<sub>2</sub> and glucose in complex samples, including cells, tissues, and cerebrospinal fluid. The distinct colorimetric response of this system demonstrates promising potential for point-of-care testing applications. Our findings provide mechanistic insights into the structure-activity relationships of nanozymes and will facilitate the development of application-targeted nanozymes for disease diagnostics.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":" ","pages":"117714"},"PeriodicalIF":10.7,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144493209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust detection of femtogram-level Alzheimer's biomarkers using machine learning-enhanced graphene biosensors. 利用机器学习增强的石墨烯生物传感器稳健检测飞图水平的阿尔茨海默氏症生物标志物。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-10-07 DOI: 10.1016/j.bios.2025.118074
Qingzhou Liu, Yuheng He, Qiyu Wang, Shunhua Min, Haoyang Geng, Yibiao Liu, Tailin Xu
{"title":"Robust detection of femtogram-level Alzheimer's biomarkers using machine learning-enhanced graphene biosensors.","authors":"Qingzhou Liu, Yuheng He, Qiyu Wang, Shunhua Min, Haoyang Geng, Yibiao Liu, Tailin Xu","doi":"10.1016/j.bios.2025.118074","DOIUrl":"https://doi.org/10.1016/j.bios.2025.118074","url":null,"abstract":"<p><p>Early diagnosis of Alzheimer's disease (AD) requires blood biomarker tests sensitive to femtogram/mL concentrations. Graphene field-effect transistors (GFETs) are promising for this application, but suffer from device-to-device variability and require recalibration after functionalization. Here, we demonstrate a machine learning approach that overcomes these limitations, enabling robust AD biomarker detection without individual device calibration. By training artificial neural networks (ANNs) on full GFET transfer characteristics, our method automatically extracts features resilient to device variations. We detected three AD biomarkers-Aβ<sub>42</sub>, Aβ<sub>40</sub>, and P-tau217-at concentrations from 1 fg/mL to 1.0 × 10<sup>5</sup> fg/mL with 98.9-100 % accuracy across multiple devices. Validation using 72 clinical plasma samples achieved four-way classification of cognitive states (healthy control, subjective cognitive decline, mild cognitive impairment, and AD), with multi-biomarker combinations improving diagnostic performance. SHAP (SHapley Additive exPlanations) analysis revealed that ANNs exploit previously uncharacterized regions of the GFET transfer characteristics that are not captured by conventional figures of merit. Unlike traditional approaches requiring device-specific calibration curves, our platform enables sensor deployment and maintains performance despite fabrication inconsistencies. This work demonstrates that machine learning can transform inherently variable graphene biosensors into reliable diagnostics, addressing a critical barrier to their potential implementation in point-of-care AD screening.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"292 ","pages":"118074"},"PeriodicalIF":10.5,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A portable high-sensitivity multiplex platform with magnetic bead-based proximity extension assay for sample-to-answer protein biomarker detection. 一种便携式高灵敏度多路平台,具有基于磁珠的接近扩展分析,用于样品到答案的蛋白质生物标志物检测。
IF 10.5 1区 生物学
Biosensors and Bioelectronics Pub Date : 2025-10-06 DOI: 10.1016/j.bios.2025.118071
Tianyi Liu, Jiumei Hu, Alexander C Hasnain, Patarajarin Akarapipad, Asher Varon, Dong Jin M Park, Hanran Lei, Kuangwen Hsieh, Tza-Huei Wang
{"title":"A portable high-sensitivity multiplex platform with magnetic bead-based proximity extension assay for sample-to-answer protein biomarker detection.","authors":"Tianyi Liu, Jiumei Hu, Alexander C Hasnain, Patarajarin Akarapipad, Asher Varon, Dong Jin M Park, Hanran Lei, Kuangwen Hsieh, Tza-Huei Wang","doi":"10.1016/j.bios.2025.118071","DOIUrl":"https://doi.org/10.1016/j.bios.2025.118071","url":null,"abstract":"<p><p>Protein biomarker detection is essential for clinical decision-making, particularly in immune profiling, infectious disease monitoring, and decentralized diagnostic settings. Current point-of-care testing (POCT) platforms for protein biomarkers often encounter challenges related to high analytical sensitivity, multiplexing capability, and fully automated sample preparation. This study introduces MagPEA-POCT, a portable and fully integrated protein detection system that uniquely combines magnetofluidic manipulations for automated on-cartridge sample preparation with magnetic bead-based proximity extension assay (MagPEA). The platform provides a true sample-in, answer-out workflow, enabling simultaneous quantification of IL-6, IL-8, and IFN-γ directly from serum within 90 min, utilizing a compact automated analyzer and disposable microfluidic cartridge. Analytical validation demonstrated detection limits of 62.3 fg/mL for IL 6 along with 168.0 fg/mL for IL 8 and 231.9 fg/mL for IFN γ, representing a two order-of-magnitude improvement over standard ELISA methods. The modular design facilitates easy adaptation to diverse biomarker panels suitable for different disease applications. This scalable and field-deployable technology effectively integrates automated sample preparation with high-sensitivity multiplex analysis, significantly advancing accessible and reliable point-of-care diagnostics.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"292 ","pages":"118071"},"PeriodicalIF":10.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信