ACS Catalysis 最新文献

筛选
英文 中文
Unveiling Intrinsic Charge Transfer Dynamics in Bone-Joint S-Scheme Heterostructures To Promote Photocatalytic Hydrogen Peroxide Generation 揭示骨接S-梯形异质结构的内在电荷转移动力学,促进光催化过氧化氢生成
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-21 DOI: 10.1021/acscatal.4c05031
Yuhui Liu, Xiaoxu Deng, Yi Wang, Qin Luo, Yunxia Liu, Shuang-Feng Yin, Peng Chen
{"title":"Unveiling Intrinsic Charge Transfer Dynamics in Bone-Joint S-Scheme Heterostructures To Promote Photocatalytic Hydrogen Peroxide Generation","authors":"Yuhui Liu, Xiaoxu Deng, Yi Wang, Qin Luo, Yunxia Liu, Shuang-Feng Yin, Peng Chen","doi":"10.1021/acscatal.4c05031","DOIUrl":"https://doi.org/10.1021/acscatal.4c05031","url":null,"abstract":"Constructing compact direct Z- and S-scheme heterostructures is an efficient strategy for realizing a highly efficient charge separation and photocatalytic performance. However, the stochastic nature of interface orientation and lattice mismatch often results in a blind region for effective inner charge transfer, which hinders the logical design of compact heterojunctions. Here, experimental results and theoretical research unveiled that complicated internal charges can be directly transferred to an intermediate cocrystal plane for electron–hole recombination in compact S-scheme heterostructures, called “bone-joint” heterostructures, which facilitate the establishment of an inherent electric field to drive charge transfer. Moreover, those bone-joint structures adjust the inherent chemical and energetic interactions that manipulate the reactant adsorption mode and surface reaction energy. As a result, a synthesized catalyst displayed a remarkable hydrogen peroxide production performance and stability. This offers a paradigm for intrinsic charge transfer dynamics in heterostructures and a guiding philosophy for designing efficient heterostructures.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Mechanisms for the Aromatic Hydroxylation: Insights into the Mechanisms of the Coumarin Hydroxylation by CYP2A6 芳香烃羟基化的多种机制:深入了解 CYP2A6 对香豆素的羟化机制
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-20 DOI: 10.1021/acscatal.4c05330
Zhenjia Gan, Jianqiang Feng, Jiabin Yin, Juping Huang, Binju Wang, John Z.H. Zhang
{"title":"Diverse Mechanisms for the Aromatic Hydroxylation: Insights into the Mechanisms of the Coumarin Hydroxylation by CYP2A6","authors":"Zhenjia Gan, Jianqiang Feng, Jiabin Yin, Juping Huang, Binju Wang, John Z.H. Zhang","doi":"10.1021/acscatal.4c05330","DOIUrl":"https://doi.org/10.1021/acscatal.4c05330","url":null,"abstract":"Different P450 isoforms may catalyze different types of reactions on the same substrate due to differences in their protein environments. To uncover how the spatial environment within the enzyme regulates substrate reactivity, we conducted quantum mechanics/molecular mechanics (QM/MM) simulations on the CYP2A6-catalyzed 7-hydroxylation of coumarin. The results revealed that water molecules can flexibly enter the active site of CYP2A6. In the absence of water molecules, the NIH shift mechanism was found to be the most favorable reaction pathway, leading to the keto intermediate that further undergoes the isomerization to form the C7-hydroxylated product. However, when water molecules are present at the active site, the N-protonation route can be facilitated by the active site waters and thus becomes the preferred one. Both the NIH mechanism and the N-protonation can rationalize the 1,2-H shift for the aromatic hydroxylation reactions. This study highlights that P450s can employ diverse and flexible mechanisms for aromatic hydroxylation, offering deeper insight into the mechanisms of P450-catalyzed aromatic hydroxylation reactions.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Furan-Based HTCC/In2S3 Heterojunction Achieves Fast Charge Separation To Boost the Photocatalytic Generation of H2O2 in Pure Water 呋喃基 HTCC/In2S3 异质结实现快速电荷分离,促进纯水中 H2O2 的光催化生成
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-19 DOI: 10.1021/acscatal.4c04341
Xiaolong Tang, Changlin Yu, Jiaming Zhang, Kaiwei Liu, Debin Zeng, Fang Li, Feng Li, Guijun Ma, Yanbin Jiang, Yongfa Zhu
{"title":"Furan-Based HTCC/In2S3 Heterojunction Achieves Fast Charge Separation To Boost the Photocatalytic Generation of H2O2 in Pure Water","authors":"Xiaolong Tang, Changlin Yu, Jiaming Zhang, Kaiwei Liu, Debin Zeng, Fang Li, Feng Li, Guijun Ma, Yanbin Jiang, Yongfa Zhu","doi":"10.1021/acscatal.4c04341","DOIUrl":"https://doi.org/10.1021/acscatal.4c04341","url":null,"abstract":"The limitations imposed by the high carrier recombination rate in the current photocatalytic H<sub>2</sub>O<sub>2</sub> production system substantially restrict the rate of H<sub>2</sub>O<sub>2</sub> generation. Herein, we successfully prepared an In<sub>2</sub>S<sub>3</sub>/HTCC dense heterojunction bridged by In–S–C bonds through in situ polymerization of glucose on In<sub>2</sub>S<sub>3</sub>. This interfacial In–S–C bond provides a fast transfer channel for electrons at the interface to achieve a highly efficient interfacial charge transfer efficiency, leading to the formation of an enhanced built-in electric field between In<sub>2</sub>S<sub>3</sub> and HTCC, thus dramatically accelerating the rate of charge separation and effectively prolonging the lifetime of the photogenerated carriers. Moreover, the coverage of HTCC enhances the absorption of visible light and sorption of O<sub>2</sub> by In<sub>2</sub>S<sub>3</sub>, while lowering its two-electron oxygen reduction reaction (ORR) energy barrier. Notably, our research demonstrates that In<sub>2</sub>S<sub>3</sub>/HTCC can generate H<sub>2</sub>O<sub>2</sub> not only through the well-known two-step one-electron ORR but also via an alternative pathway utilizing <sup>1</sup>O<sub>2</sub> as an intermediate, thereby enhancing H<sub>2</sub>O<sub>2</sub> production. Benefiting from these advantages, In<sub>2</sub>S<sub>3</sub>/HTCC-2 can produce H<sub>2</sub>O<sub>2</sub> at a rate of up to 1392 μmol g<sup>–1</sup> h<sup>–1</sup> in a pure aqueous system, which is 18.2 and 5.2 times higher than that of pure In<sub>2</sub>S<sub>3</sub> and HTCC, respectively. Our work not only provides a novel synthesis method of new organic/inorganic heterojunction photocatalysts based on HTCC but also offers new insights into the potential mechanism of interfacial bonding of heterostructures to regulate the photocatalytic H<sub>2</sub>O<sub>2</sub> production activity.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enantioselective Synthesis of Helically Chiral Molecules Enabled by Asymmetric Organocatalysis 通过不对称有机催化实现螺旋手性分子的对映选择性合成
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-19 DOI: 10.1021/acscatal.4c05345
Qingqin Huang, Yu-Ping Tang, Chao-Gang Zhang, Zhen Wang, Lei Dai
{"title":"Enantioselective Synthesis of Helically Chiral Molecules Enabled by Asymmetric Organocatalysis","authors":"Qingqin Huang, Yu-Ping Tang, Chao-Gang Zhang, Zhen Wang, Lei Dai","doi":"10.1021/acscatal.4c05345","DOIUrl":"https://doi.org/10.1021/acscatal.4c05345","url":null,"abstract":"Helical systems have attracted considerable interest across multiple scientific fields due to not only their essential roles in biological processes but also their potential to unveil chirality-associated phenomena, properties, and functionalities. Today, the distinctive topologies of helicenes have found extensive applications in materials science, molecular recognition, and asymmetric catalysis owing to their structural diversity and unique optical and electronic characteristics. Nonetheless, in contrast to the advancements in the synthesis of optically pure point-chiral and axially chiral compounds, the catalytic enantioselective assembly of helically chiral molecules remains in its nascent stages. This Perspective delves into the latest developments in the organocatalytic asymmetric synthesis of helically chiral compounds, emphasizing both the strengths and limitations of the existing literature, with perspectives on the remaining challenges within the field. It is expected that this Perspective will serve as a catalyst for innovation, inspiring the creation of more efficient strategies to synthesize helically chiral molecules.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases 基于生物素-链霉亲和素技术的人工过氧化物酶可媲美天然过氧化物酶的效率
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-19 DOI: 10.1021/acscatal.4c03208
Manjistha Mukherjee, Valerie Waser, Elinor F. Morris, Nico V. Igareta, Alec H. Follmer, Roman P. Jakob, Dilbirin Üzümcü, Timm Maier, Thomas R. Ward
{"title":"Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases","authors":"Manjistha Mukherjee, Valerie Waser, Elinor F. Morris, Nico V. Igareta, Alec H. Follmer, Roman P. Jakob, Dilbirin Üzümcü, Timm Maier, Thomas R. Ward","doi":"10.1021/acscatal.4c03208","DOIUrl":"https://doi.org/10.1021/acscatal.4c03208","url":null,"abstract":"Heme peroxidases represent an important category of heme-containing metalloenzymes that harness peroxide to oxidize a diverse array of substrates. Capitalizing on a well-established catalytic mechanism, diverse peroxidase mimics have been widely investigated and optimized. Herein, we report on the design, assembly, characterization, and genetic engineering of an artificial heme-based peroxidase relying on the biotin–streptavidin technology. The crystal structures of the wild-type and the best-performing double mutant of artificial peroxidases provide valuable insight regarding the nearby residues strategically mutated to optimize the peroxidase activity (i.e., Sav S112E K121H). We hypothesize that these two residues mimic the polar residues in the second coordination sphere, involved in activating the bound peroxide in two very widely studied peroxidases: chloroperoxidase (CPO) (i.e., Glu 183 and His 105) and horseradish peroxidase (i.e., Arg 38 and His 42). Despite the absence of a tightly bound axial ligand, which can exert a “push effect”, the evolved artificial peroxidase exhibits best-in-class activity for oxidizing two standard substrates (TMB and ABTS) in the presence of hydrogen peroxide.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating the d-Band Center of Metal–Organic Frameworks for Efficient Nitrate Reduction Reaction and Zinc-Nitrate Battery 调节金属有机框架的 d 波段中心以实现高效硝酸盐还原反应和硝酸锌电池
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-18 DOI: 10.1021/acscatal.4c04340
Yuanhui Yao, Xiaofei Wei, Haiqiao Zhou, Kai Wei, Bin Kui, Fangfang Wu, Liang Chen, Wei Wang, Fangna Dai, Peng Gao, Nana Wang, Wei Ye
{"title":"Regulating the d-Band Center of Metal–Organic Frameworks for Efficient Nitrate Reduction Reaction and Zinc-Nitrate Battery","authors":"Yuanhui Yao, Xiaofei Wei, Haiqiao Zhou, Kai Wei, Bin Kui, Fangfang Wu, Liang Chen, Wei Wang, Fangna Dai, Peng Gao, Nana Wang, Wei Ye","doi":"10.1021/acscatal.4c04340","DOIUrl":"https://doi.org/10.1021/acscatal.4c04340","url":null,"abstract":"The electrochemical reduction of nitrate ions to valuable ammonia enables the recovery of nitrate pollutants from industrial wastewater, thereby synchronously balancing the nitrogen cycle and achieving NH<sub>3</sub> production. However, the currently reported electrocatalysts still suffer from the low NH<sub>3</sub> yield rate, NH<sub>3</sub> Faradaic inefficiency, and NH<sub>3</sub> partial current density. Herein, a strategy based on the regulation of the d-band center by Ru doping is presented to boost ammonia production. Theoretical calculations unravel that the Ru dopant in Ni metal–organic framework shifts the d-band center of the neighboring Ni sites upward, optimizing the adsorption strength of the N-intermediates, resulting in greatly enhanced nitrate reduction reaction performance. The synthesized Ru-doped Ni metal–organic framework rod array electrode delivers a NH<sub>3</sub> yield rate of 1.31 mmol h<sup>–1</sup> cm<sup>–2</sup> and NH<sub>3</sub> Faradaic efficiency of 91.5% at −0.6 V versus reversible hydrogen electrode, as well as good cycling stability. In view of the multielectron transfer in nitrate reduction and electrocatalytic activity, the Zn-NO<sub>3</sub><sup>–</sup> battery is assembled by this electrode and Zn anode, which delivers a high open-circuit voltage of 1.421 V and the maximum output power density of 4.99 mW cm<sup>–2</sup>, demonstrating potential application value.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating the Electrochemical Microenvironment of Ni(OH)2 by Cr Doping for Highly Efficient Methanol Electrooxidation 通过掺杂铬调节 Ni(OH)2 的电化学微环境以实现高效甲醇电氧化
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-18 DOI: 10.1021/acscatal.4c05729
Hongye Qin, Yukun Ye, Guangliang Lin, Jinyang Zhang, Wenqi Jia, Wei Xia, Lifang Jiao
{"title":"Regulating the Electrochemical Microenvironment of Ni(OH)2 by Cr Doping for Highly Efficient Methanol Electrooxidation","authors":"Hongye Qin, Yukun Ye, Guangliang Lin, Jinyang Zhang, Wenqi Jia, Wei Xia, Lifang Jiao","doi":"10.1021/acscatal.4c05729","DOIUrl":"https://doi.org/10.1021/acscatal.4c05729","url":null,"abstract":"Nickel-based catalysts demonstrate promising potential in integrated hydrogen production via methanol electro-oxidation (MOR). However, the MOR involves multiple hydroxide ions (OH<sup>–</sup>) and multielectron synergistic catalytic processes in alkaline electrolytes. The low OH<sup>–</sup> capture capability of Ni-based catalysts leads to a reduced energy conversion efficiency. Furthermore, the competitive adsorption of H<sub>2</sub>O and CH<sub>3</sub>OH molecules on the catalyst surface blocks active sites, resulting in a decreased selectivity for formate. To address these challenges, effectively manipulating the electrochemical microenvironment has emerged as a viable strategy. In this study, we successfully achieved selective electrooxidation of methanol to formate on Ni(OH)<sub>2</sub> by incorporating a hard Lewis acid heteroatom (Cr) to finely tune the electrochemical interface microenvironment. Experimental and theoretical investigations reveal that incorporating ordered Cr atoms into Ni(OH)<sub>2</sub> can establish a hydrophobic interface, suppressing the blockage of active sites and promoting the enrichment of OH<sup>–</sup> at the electrified interface. By leveraging the enhanced localized alkalinity and hydrophobic microenvironment at the modified electrified interface, high-value formate can be effectively synthesized with nearly 100% selectivity over a wide potential range. Furthermore, the catalysts display robust electrocatalytic capabilities, delivering remarkable performance with a high current density of 50 mA cm<sup>–2</sup> at a working potential of 1.45 V vs RHE.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts 利用原子尺度的协同作用,在铜镍双原子催化剂上进行选择性 CO2 电催化制 CO
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-18 DOI: 10.1021/acscatal.4c05169
Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong, Jianfeng Huang, Yan Yu
{"title":"Leveraging Atomic-Scale Synergy for Selective CO2 Electrocatalysis to CO over CuNi Dual-Atom Catalysts","authors":"Bin Chen, Dehuan Shi, Renxia Deng, Xin Xu, Wenxia Liu, Yang Wei, Zheyuan Liu, Shenghong Zhong, Jianfeng Huang, Yan Yu","doi":"10.1021/acscatal.4c05169","DOIUrl":"https://doi.org/10.1021/acscatal.4c05169","url":null,"abstract":"Revealing the synergistic catalytic mechanism involving multiple active centers is crucial for understanding multiphase catalysis. However, the complex structures of catalysts and interfacial environments pose a challenge in thoroughly exploring the experimental evidence. This study reports the utilization of a CuNi dual-atom catalyst (Cu/Ni–NC) for the electrochemical reduction of CO<sub>2</sub>. It demonstrates a high Faradaic efficiency of CO exceeding 99%, remarkable reaction activity with a partial current density surpassing –300 mA cm<sup>–2</sup>, and prolonged stability for more than 5 days at a current density of –200 mA·cm<sup>–2</sup>. <i>Operando</i> characterization techniques and density functional theory calculations reveal that Ni atoms function as active sites for the activation and hydrogenation of CO<sub>2</sub>, while Cu atoms serve as active sites for the dissociation of H<sub>2</sub>O, supplying protons for the subsequent hydrogenation process. Moreover, the electronic interactions between Ni and Cu atoms facilitate the formation of *COOH and the dissociation of H<sub>2</sub>O, illustrating a synergistic reduction of CO<sub>2</sub> at the dual-atom sites.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics, Mechanism, and Thermodynamics of Ceria-Zirconia Reduction 氧化铈-氧化锆还原的动力学、机理和热力学
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-18 DOI: 10.1021/acscatal.4c04771
Andrew Hwang, Andrew “Bean” Getsoian, Enrique Iglesia
{"title":"Kinetics, Mechanism, and Thermodynamics of Ceria-Zirconia Reduction","authors":"Andrew Hwang, Andrew “Bean” Getsoian, Enrique Iglesia","doi":"10.1021/acscatal.4c04771","DOIUrl":"https://doi.org/10.1021/acscatal.4c04771","url":null,"abstract":"Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2–<i>x</i></sub> (CZO) is widely used for the storage and reaction of O atoms (O*) in chemical looping and emissions control. Reductants react with O* to form vacancies (*) at rates limited by surface reactions with O*, replenished through fast diffusion through CZO crystals. The dynamics and mechanism of these surface reactions remain unresolved because O* stability and reactivity depend very strongly on the extent of CZO reduction during stoichiometric reactions. These thermodynamic nonidealities are evident from free energy penalties in removing O* that increase sharply as intracrystalline O* concentrations decrease, leading to reduction rates that deviate from the expected linear dependence of rates on O* concentrations. Rates of CZO reduction by CO, at conditions resembling “cold start” of vehicle emissions systems, decrease 10-fold when O* concentrations decrease by only a factor of 2; this nonlinearity reflects the strong effects of thermodynamic nonidealities on reaction dynamics. This study addresses and resolves these mechanistic and practical matters using transition state theory, a thermodynamic construct that rigorously accounts for the prevalent nonideal behavior. Such formalisms treat Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> as an ideal solution and O*, *, surface-bound intermediates, and transition states as solutes within a well-mixed Ce<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2–<i>x</i></sub> solution with excess free energies that depend strongly on extent of reduction. The nonideal behavior of these solutes and the reactivity of O* in reactions with CO are related to the measured thermodynamics of O* through scaling relations, and the requisite kinetic parameters for the ideal system are independently derived from a mechanism-based interpretation of catalytic CO–O<sub>2</sub> reactions on stoichiometric CZO. These approaches and constructs lead to a kinetic model that accurately describes measured transient stoichiometric reduction rates, but only when incorporated into reaction-convection equations that rigorously capture how the thermodynamic activities of kinetically relevant reactants, transition states, and spectators evolve in time and space. These formalisms provide a general framework for the analysis of stoichiometric processes in strongly nonideal systems that are ubiquitous in carbon capture, energy storage, and environmental remediation.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of the Properties of Hydrogen Dissociation and Transfer in the Presence of S Atoms for Efficient Hydrogenations 调节 S 原子存在时的氢解离和转移特性以实现高效加氢反应
IF 12.9 1区 化学
ACS Catalysis Pub Date : 2024-10-18 DOI: 10.1021/acscatal.4c05501
Xiaoyan Liu, Mingyuan Zhang, Xin Liu, Jiali Liu, Huicong Dai, Wenhao Luo, Jian Liu, Rui Gao, Qihua Yang
{"title":"Regulation of the Properties of Hydrogen Dissociation and Transfer in the Presence of S Atoms for Efficient Hydrogenations","authors":"Xiaoyan Liu, Mingyuan Zhang, Xin Liu, Jiali Liu, Huicong Dai, Wenhao Luo, Jian Liu, Rui Gao, Qihua Yang","doi":"10.1021/acscatal.4c05501","DOIUrl":"https://doi.org/10.1021/acscatal.4c05501","url":null,"abstract":"The dissociation and spillover process of hydrogen is one of the key processes in hydrogenation reactions, but this process is very challenging or even impossible in the presence of a S atom, as S atoms can severely poison the surface of supported metal catalysts. Herein, we report that the efficient dissociation and transfer of hydrogen can be achieved in the presence of S poisoning over the synergetic process of hydrogen transfer units together with H<sub>2</sub> dissociation units in the hydrogenation of 5-nitrobenzothiazole catalyzed by Pt/MoO<sub>3</sub>. Pt/MoO<sub>3</sub> showcases 99% conversion with ∼99% selectivity under mild reaction conditions and is one of the most active catalysts reported so far for the hydrogenation of sulfur atom-containing compounds. Mechanism studies, in situ characterization, and density functional theory calculations collectively demonstrate that the MoO<sub>3</sub> support, with H<sub>1.68</sub>MoO<sub>3</sub> as an intermediate, acts as a bridge for transferring H species between Pt sites and nitrobenzothiazole. The unique H proton storage and release properties of in situ formed H<sub>1.68</sub>MoO<sub>3</sub> not only accelerate the breaking of the N–O bond for the hydrogenation of 5-nitrobenzothiazole but also prevent sulfur poisoning. This work provides a promising strategy to tackle the current challenges in the catalytic hydrogenation of sulfur atom-containing compounds.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信