Chemical Reviews最新文献

筛选
英文 中文
Correction to Depolymerization within a Circular Plastics System. 纠正循环塑料系统中的解聚现象。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-11 DOI: 10.1021/acs.chemrev.4c00473
Robbie A Clark, Michael P Shaver
{"title":"Correction to Depolymerization within a Circular Plastics System.","authors":"Robbie A Clark, Michael P Shaver","doi":"10.1021/acs.chemrev.4c00473","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00473","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. 用于异相电催化的新兴原子模型方法。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-11 DOI: 10.1021/acs.chemrev.3c00735
Zachary Levell, Jiabo Le, Saerom Yu, Ruoyu Wang, Sudheesh Ethirajan, Rachita Rana, Ambarish Kulkarni, Joaquin Resasco, Deyu Lu, Jun Cheng, Yuanyue Liu
{"title":"Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis.","authors":"Zachary Levell, Jiabo Le, Saerom Yu, Ruoyu Wang, Sudheesh Ethirajan, Rachita Rana, Ambarish Kulkarni, Joaquin Resasco, Deyu Lu, Jun Cheng, Yuanyue Liu","doi":"10.1021/acs.chemrev.3c00735","DOIUrl":"10.1021/acs.chemrev.3c00735","url":null,"abstract":"<p><p>Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction: Operando and In Situ Studies in Catalysis and Electrocatalysis 简介:催化和电催化的操作和原位研究。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-10 DOI: 10.1021/acs.chemrev.4c00184
Beatriz Roldán Cuenya*,  and , Miguel A. Bañares*, 
{"title":"Introduction: Operando and In Situ Studies in Catalysis and Electrocatalysis","authors":"Beatriz Roldán Cuenya*,&nbsp; and ,&nbsp;Miguel A. Bañares*,&nbsp;","doi":"10.1021/acs.chemrev.4c00184","DOIUrl":"10.1021/acs.chemrev.4c00184","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to Propose a Great Chemical Reviews Article 如何撰写精彩的化学品评论文章。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-10 DOI: 10.1021/acs.chemrev.4c00414
David S. Ginger*, 
{"title":"How to Propose a Great Chemical Reviews Article","authors":"David S. Ginger*,&nbsp;","doi":"10.1021/acs.chemrev.4c00414","DOIUrl":"10.1021/acs.chemrev.4c00414","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. 基于地球富集金属的单原子催化剂在能源相关领域的应用。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-05 DOI: 10.1021/acs.chemrev.4c00155
Štĕpán Kment, Aristides Bakandritsos, Iosif Tantis, Hana Kmentová, Yunpeng Zuo, Olivier Henrotte, Alberto Naldoni, Michal Otyepka, Rajender S Varma, Radek Zbořil
{"title":"Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications.","authors":"Štĕpán Kment, Aristides Bakandritsos, Iosif Tantis, Hana Kmentová, Yunpeng Zuo, Olivier Henrotte, Alberto Naldoni, Michal Otyepka, Rajender S Varma, Radek Zbořil","doi":"10.1021/acs.chemrev.4c00155","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00155","url":null,"abstract":"<p><p>Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light from Afield: Fast, High-Resolution, and Layer-Free Deep Vat 3D Printing. 来自远方的光:快速、高分辨率和无层深槽三维打印。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-05 DOI: 10.1021/acs.chemrev.4c00134
Parth Chansoria, Riccardo Rizzo, Dominic Rütsche, Hao Liu, Paul Delrot, Marcy Zenobi-Wong
{"title":"Light from Afield: Fast, High-Resolution, and Layer-Free Deep Vat 3D Printing.","authors":"Parth Chansoria, Riccardo Rizzo, Dominic Rütsche, Hao Liu, Paul Delrot, Marcy Zenobi-Wong","doi":"10.1021/acs.chemrev.4c00134","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00134","url":null,"abstract":"<p><p>Harnessing light for cross-linking of photoresponsive materials has revolutionized the field of 3D printing. A wide variety of techniques leveraging broad-spectrum light shaping have been introduced as a way to achieve fast and high-resolution printing, with applications ranging from simple prototypes to biomimetic engineered tissues for regenerative medicine. Conventional light-based printing techniques use cross-linking of material in a layer-by-layer fashion to produce complex parts. Only recently, new techniques have emerged which deploy multidirection, tomographic, light-sheet or filamented light-based image projections deep into the volume of resin-filled vat for photoinitiation and cross-linking. These Deep Vat printing (DVP) approaches alleviate the need for layer-wise printing and enable unprecedented fabrication speeds (within a few seconds) with high resolution (>10 μm). Here, we elucidate the physics and chemistry of these processes, their commonalities and differences, as well as their emerging applications in biomedical and non-biomedical fields. Importantly, we highlight their limitations, and future scope of research that will improve the scalability and applicability of these DVP techniques in a wide variety of engineering and regenerative medicine applications.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncanonical Amino Acids in Biocatalysis. 生物催化中的非典型氨基酸
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-03 DOI: 10.1021/acs.chemrev.4c00120
Zachary Birch-Price, Florence J Hardy, Thomas M Lister, Anna R Kohn, Anthony P Green
{"title":"Noncanonical Amino Acids in Biocatalysis.","authors":"Zachary Birch-Price, Florence J Hardy, Thomas M Lister, Anna R Kohn, Anthony P Green","doi":"10.1021/acs.chemrev.4c00120","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00120","url":null,"abstract":"<p><p>In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion 吡咯糖基-tRNA 合成酶的进化:从甲烷生成到遗传密码扩展
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-07-02 DOI: 10.1021/acs.chemrev.4c00031
Nikolaj G. Koch, Nediljko Budisa
{"title":"Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion","authors":"Nikolaj G. Koch, Nediljko Budisa","doi":"10.1021/acs.chemrev.4c00031","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00031","url":null,"abstract":"Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher <i>in vivo</i> activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody–drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":62.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. 不对称催化中的 P-Stereogenic 磷配体。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-07-02 DOI: 10.1021/acs.chemrev.3c00875
Tsuneo Imamoto
{"title":"P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis.","authors":"Tsuneo Imamoto","doi":"10.1021/acs.chemrev.3c00875","DOIUrl":"https://doi.org/10.1021/acs.chemrev.3c00875","url":null,"abstract":"<p><p>Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proline Analogues 脯氨酸类似物。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-06-28 DOI: 10.1021/acs.chemrev.4c00007
Vladimir Kubyshkin,  and , Marina Rubini, 
{"title":"Proline Analogues","authors":"Vladimir Kubyshkin,&nbsp; and ,&nbsp;Marina Rubini,&nbsp;","doi":"10.1021/acs.chemrev.4c00007","DOIUrl":"10.1021/acs.chemrev.4c00007","url":null,"abstract":"<p >Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and <i>cis</i>/<i>trans</i> amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信