Chemical ReviewsPub Date : 2025-02-17DOI: 10.1021/acs.chemrev.4c00615
Carlson Alexander, Zhilin Guo, Peter B. Glover, Stephen Faulkner, Zoe Pikramenou
{"title":"Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics","authors":"Carlson Alexander, Zhilin Guo, Peter B. Glover, Stephen Faulkner, Zoe Pikramenou","doi":"10.1021/acs.chemrev.4c00615","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00615","url":null,"abstract":"Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4<i>f</i> electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal–organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"49 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-17DOI: 10.1021/acs.chemrev.4c00512
A. Alec Talin, Jordan Meyer, Jingxian Li, Mantao Huang, Miranda Schwacke, Heejung W. Chung, Longlong Xu, Elliot J. Fuller, Yiyang Li, Bilge Yildiz
{"title":"Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities","authors":"A. Alec Talin, Jordan Meyer, Jingxian Li, Mantao Huang, Miranda Schwacke, Heejung W. Chung, Longlong Xu, Elliot J. Fuller, Yiyang Li, Bilge Yildiz","doi":"10.1021/acs.chemrev.4c00512","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00512","url":null,"abstract":"Non-von Neumann computing using neuromorphic systems based on analogue synaptic and neuronal elements has emerged as a potential solution to tackle the growing need for more efficient data processing, but progress toward practical systems has been stymied due to a lack of materials and devices with the appropriate attributes. Recently, solid state electrochemical ion-insertion, also known as electrochemical random access memory (ECRAM) has emerged as a promising approach to realize the needed device characteristics. ECRAM is a three terminal device that operates by tuning electronic conductance in functional materials through solid-state electrochemical redox reactions. This mechanism can be considered as a gate-controlled bulk modulation of dopants and/or phases in the channel. Early work demonstrating that ECRAM can achieve nearly ideal analogue synaptic characteristics has sparked tremendous interest in this approach. More recently, the realization that electrochemical ion insertion can be used to tune the electronic properties of many types of materials including transition metal oxides, layered two-dimensional materials, organic and coordination polymers, and that the changes in conductance can span orders of magnitude has further attracted interest in ECRAM as the basis for analogue synaptic elements for inference accelerators as well as for dynamical devices that can emulate a wide range of neuronal characteristics for implementation in analogue spiking neural networks. At its core, ECRAM shares many fundamental aspects with rechargeable batteries, where ion insertion materials are used extensively for their ability to reversibly store charge and energy. Computing applications, however, present drastically different requirements: systems will require many millions of devices, scaled down to tens of nanometers, all while achieving reliable electronic-state tuning at scaled-up rates and endurances, and with minimal energy dissipation and noise. In this review, we discuss the history, basic concepts, recent progress, as well as the challenges and opportunities for different types of ECRAM, broadly grouped by their primary mobile ionic charge carrier, including Li, protons, and oxygen vacancies.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"80 4 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy.","authors":"Wei Xu, Guoqiang Guan, Renye Yue, Zhe Dong, Lingling Lei, Heemin Kang, Guosheng Song","doi":"10.1021/acs.chemrev.4c00546","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00546","url":null,"abstract":"<p><p>Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":""},"PeriodicalIF":51.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-12DOI: 10.1021/acs.chemrev.4c00958
Brooks A Abel, Geoffrey W Coates
{"title":"Introduction: The Future of Plastics Sustainability.","authors":"Brooks A Abel, Geoffrey W Coates","doi":"10.1021/acs.chemrev.4c00958","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00958","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1255-1256"},"PeriodicalIF":51.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-12DOI: 10.1021/acs.chemrev.4c00764
Atif Mahammed, Harry B Gray, Zeev Gross
{"title":"Silver Anniversary of the Renaissance in Metallocorrole Chemistry.","authors":"Atif Mahammed, Harry B Gray, Zeev Gross","doi":"10.1021/acs.chemrev.4c00764","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00764","url":null,"abstract":"<p><p>The 1999 discovery of one-pot corrole synthesis opened the floodgates for research on these unique macrocyclic chelating agents. The enormous impact of this discovery has been documented in numerous reviews describing advances in the synthetic chemistry of corroles and selected applications in which corroles are key components. Our silver anniversary review focuses on the structures and reactions of all well characterized corrole-chelated d- and p-block metal complexes, including discussions of their electronic excited-state physics and chemistry. Emphasis is placed on electronic structure of the trinegative N4 coordination core, which stabilizes high-valent metals and activates low-valent ones, and, importantly, profoundly influences ground- and excited-state reactivity. Our story highlights the unique properties of corroles that have made them the molecular components of choice in a plethora of applications. These include their utility for sensing gases and anions, rescue of vital biomolecules from oxidative damage, destruction of cancerous cells, and catalysis of reactions critical for organic synthesis, as well as those involved in clean energy processes such as production of hydrogen and reduction of oxygen. In our view, research on corroles will continue to grow by leaps and bounds, most especially in areas of human health research and renewable energy science and technology.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":""},"PeriodicalIF":51.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-12DOI: 10.1021/acs.chemrev.4c0095810.1021/acs.chemrev.4c00958
Brooks A. Abel, and , Geoffrey W. Coates,
{"title":"Introduction: The Future of Plastics Sustainability","authors":"Brooks A. Abel, and , Geoffrey W. Coates, ","doi":"10.1021/acs.chemrev.4c0095810.1021/acs.chemrev.4c00958","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00958https://doi.org/10.1021/acs.chemrev.4c00958","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"125 3","pages":"1255–1256 1255–1256"},"PeriodicalIF":51.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-12DOI: 10.1021/acs.chemrev.4c00730
Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee
{"title":"Strategies to Expand the Genetic Code of Mammalian Cells.","authors":"Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee","doi":"10.1021/acs.chemrev.4c00730","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00730","url":null,"abstract":"<p><p>Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":""},"PeriodicalIF":51.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries","authors":"Tao Yu, Yuankai Liu, Haoyu Li, Yu Sun, Shaohua Guo, Haoshen Zhou","doi":"10.1021/acs.chemrev.4c00894","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00894","url":null,"abstract":"Solid electrolytes, as the core of all-solid-state batteries (ASSBs), play a crucial role in determining the kinetics of ion transport and the interface compatibility with cathodes and anodes, which can be subdivided into catholytes, bulk electrolytes, and anolytes based on their functional characteristics. Among various inorganic solid electrolytes, ductile solid electrolytes, distinguished from rigid oxide electrolytes, exhibit excellent ion transport properties even under cold pressing, thus holding greater promise for industrialization. However, the challenge lies in finding a ductile solid electrolyte that can simultaneously serve as catholyte, bulk electrolyte, and anolyte. Fortunately, due to the immobility of solid electrolytes, combining multiple types of solid electrolytes allows for leveraging their respective advantages. In this review, we discuss five types of solid electrolytes, sulfides, halides, nitrides, antiperovskite-type, and complex hydrides, and the challenges and superiorities for these electrolytes are also addressed. The impact of pressure on ASSBs has been systematically discussed. Furthermore, the suitability of electrolytes as the catholyte, bulk electrolyte, and anolyte is discussed based on their functional characteristics and physicochemical properties. This discussion aims to deepen our understanding of solid electrolytes, enabling us to harness the advantages of various types of solid electrolytes and develop practical, high-performance ASSBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"10 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-11DOI: 10.1021/acs.chemrev.4c00676
Kenneth D Judd, Sean W Parsons, Tirthick Majumder, Jahan M Dawlaty
{"title":"Electrostatics, Hydration, and Chemical Equilibria at Charged Monolayers on Water.","authors":"Kenneth D Judd, Sean W Parsons, Tirthick Majumder, Jahan M Dawlaty","doi":"10.1021/acs.chemrev.4c00676","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00676","url":null,"abstract":"<p><p>The chemistry and physics of soft matter interfaces, especially aqueous-organic interfaces, are centrally important to many areas of science and technology. Often, the thermodynamics, kinetics, and selectivity of reactions are modified at interfaces. Here, we review the electrostatics and hydration at charged monolayers on water and their influence on interfacial chemical equilibria. First, we provide an understanding of interfaces as a conceptual continuation of the solvation shell of small molecules, along with recent relevant experimental work. Then, we provide a summary of models for describing the electrostatics of aqueous interfaces. While we will discuss a range of new developments, our focus will be on systems where the electrostatics of the surface is controllable by the choice of relatively simple insoluble surfactants. New insights into the molecular structure of the double layer, with particular attention on the knowledge gained from spectroscopy will be reviewed. Our approach is to familiarize the reader with simple models, followed by discussion of models with further complexity for explaining interfacial phenomena. Experiments that test the limits of such models will also be discussed. Finally, we will provide an outlook on engineering the interfacial environment for tailored reactivity, along with the anticipated experimental advancements and potentials impacts.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":""},"PeriodicalIF":51.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical ReviewsPub Date : 2025-02-10DOI: 10.1021/acs.chemrev.4c00224
Maura Charette, Carolyn Rosenblum, Olivia Shade, Alexander Deiters
{"title":"Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion","authors":"Maura Charette, Carolyn Rosenblum, Olivia Shade, Alexander Deiters","doi":"10.1021/acs.chemrev.4c00224","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00224","url":null,"abstract":"Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"40 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}