Chemical Reviews最新文献

筛选
英文 中文
Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides 导言:二维层状过渡金属二卤化物
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c0058610.1021/acs.chemrev.4c00586
Xiangfeng Duan*,  and , Hua Zhang*, 
{"title":"Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides","authors":"Xiangfeng Duan*,  and , Hua Zhang*, ","doi":"10.1021/acs.chemrev.4c0058610.1021/acs.chemrev.4c00586","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00586https://doi.org/10.1021/acs.chemrev.4c00586","url":null,"abstract":"","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 19","pages":"10619–10622 10619–10622"},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. 用于遗传密码扩展和重编程的吡咯烷酮系统工程。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-10-09 Epub Date: 2024-09-05 DOI: 10.1021/acs.chemrev.4c00243
Daniel L Dunkelmann, Jason W Chin
{"title":"Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.","authors":"Daniel L Dunkelmann, Jason W Chin","doi":"10.1021/acs.chemrev.4c00243","DOIUrl":"10.1021/acs.chemrev.4c00243","url":null,"abstract":"<p><p>Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNA<sup>Pyl</sup> pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNA<sup>Pyl</sup> pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from <i>E. coli</i> to all domains of life, using PylRS/tRNA<sup>Pyl</sup> pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNA<sup>Pyl</sup> pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNA<sup>Pyl</sup> pairs to add noncanonical monomers, beyond α-<i>L</i>-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNA<sup>Pyl</sup> pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNA<sup>Pyl</sup> pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNA<sup>Pyl</sup> pairs.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"11008-11062"},"PeriodicalIF":51.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes 芳香族化学:生成方法和含有多种芳炔的反应
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c00296
Nayoung Kim, Myungsoo Choi, Sung-Eun Suh, David M. Chenoweth
{"title":"Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes","authors":"Nayoung Kim, Myungsoo Choi, Sung-Eun Suh, David M. Chenoweth","doi":"10.1021/acs.chemrev.4c00296","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00296","url":null,"abstract":"Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis 用于液相环境催化的异质催化剂微环境工程
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-10-09 DOI: 10.1021/acs.chemrev.4c00276
Zhong-Shuai Zhu, Shuang Zhong, Cheng Cheng, Hongyu Zhou, Hongqi Sun, Xiaoguang Duan, Shaobin Wang
{"title":"Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis","authors":"Zhong-Shuai Zhu, Shuang Zhong, Cheng Cheng, Hongyu Zhou, Hongqi Sun, Xiaoguang Duan, Shaobin Wang","doi":"10.1021/acs.chemrev.4c00276","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00276","url":null,"abstract":"Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"33 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine 聚合诱导发光剂:活组织检查在精准医疗中的作用
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-10-08 DOI: 10.1021/acs.chemrev.4c00244
Yanhong Duo, Lei Han, Yaoqiang Yang, Zhifeng Wang, Lirong Wang, Jingyi Chen, Zhongyuan Xiang, Juyoung Yoon, Guanghong Luo, Ben Zhong Tang
{"title":"Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine","authors":"Yanhong Duo, Lei Han, Yaoqiang Yang, Zhifeng Wang, Lirong Wang, Jingyi Chen, Zhongyuan Xiang, Juyoung Yoon, Guanghong Luo, Ben Zhong Tang","doi":"10.1021/acs.chemrev.4c00244","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00244","url":null,"abstract":"Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), <i>etc</i>. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"7 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials 扩展生物电催化和生物材料的基因密码
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-10-08 DOI: 10.1021/acs.chemrev.4c00077
Yonatan Chemla, Federico Kaufman, Miriam Amiram, Lital Alfonta
{"title":"Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials","authors":"Yonatan Chemla, Federico Kaufman, Miriam Amiram, Lital Alfonta","doi":"10.1021/acs.chemrev.4c00077","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00077","url":null,"abstract":"Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"131 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis 非典型氨基酸:为生物催化带来新的自然功能性
IF 62.1 1区 化学
Chemical Reviews Pub Date : 2024-09-27 DOI: 10.1021/acs.chemrev.4c00136
Bart Brouwer, Franco Della-Felice, Jan Hendrik Illies, Emilia Iglesias-Moncayo, Gerard Roelfes, Ivana Drienovská
{"title":"Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis","authors":"Bart Brouwer, Franco Della-Felice, Jan Hendrik Illies, Emilia Iglesias-Moncayo, Gerard Roelfes, Ivana Drienovská","doi":"10.1021/acs.chemrev.4c00136","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00136","url":null,"abstract":"Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. <i>In vivo</i> genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"53 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrate Technologies for CO2 Capture and Sequestration: Status and Perspectives. 二氧化碳捕集与封存的水合物技术:现状与展望》。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-25 Epub Date: 2024-08-27 DOI: 10.1021/acs.chemrev.2c00777
Pengfei Wang, Yun Li, Ningru Sun, Songbai Han, Xiaomeng Wang, Qinqin Su, Yanjun Li, Jian He, Xiaohui Yu, Shiyu Du, Joseph S Francisco, Jinlong Zhu, Yusheng Zhao
{"title":"Hydrate Technologies for CO<sub>2</sub> Capture and Sequestration: Status and Perspectives.","authors":"Pengfei Wang, Yun Li, Ningru Sun, Songbai Han, Xiaomeng Wang, Qinqin Su, Yanjun Li, Jian He, Xiaohui Yu, Shiyu Du, Joseph S Francisco, Jinlong Zhu, Yusheng Zhao","doi":"10.1021/acs.chemrev.2c00777","DOIUrl":"10.1021/acs.chemrev.2c00777","url":null,"abstract":"<p><p>CO<sub>2</sub> capture and sequestration based on hydrate technology are considered supplementary approaches for reducing carbon emissions and mitigating the greenhouse effect. Direct CO<sub>2</sub> hydrate formation and CH<sub>4</sub> gas substitution in natural gas hydrates are two of the main methods used for the sequestration of CO<sub>2</sub> in hydrates. In this Review, we introduce the crystal structures of CO<sub>2</sub> hydrates and CO<sub>2</sub>-mixed gas hydrates and summarize the interactions between the CO<sub>2</sub> molecules and clathrate hydrate/H<sub>2</sub>O frames. In particular, we focus on the role of diffraction techniques in analyzing hydrate structures. The kinetic and thermodynamic properties then are introduced from micro/macro perspectives. Furthermore, the replacement of natural gas with CO<sub>2</sub>/CO<sub>2</sub>-mixed gas is discussed comprehensively in terms of intermolecular interactions, influencing factors, and displacement efficiency. Based on the analysis of related costs, risks, and policies, the economics of CO<sub>2</sub> capture and sequestration based on hydrate technology are explained. Moreover, the difficulties and challenges at this stage and the directions for future research are described. Finally, we investigate the status of recent research related to CO<sub>2</sub> capture and sequestration based on hydrate technology, revealing its importance in carbon emission reduction.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10363-10385"},"PeriodicalIF":51.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Integration of Wearable Devices for Physiological Monitoring. 用于生理监测的可穿戴设备的混合集成。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-25 Epub Date: 2024-08-27 DOI: 10.1021/acs.chemrev.3c00471
Yu Zhang, Xin Ting Zheng, Xiangyu Zhang, Jieming Pan, Aaron Voon-Yew Thean
{"title":"Hybrid Integration of Wearable Devices for Physiological Monitoring.","authors":"Yu Zhang, Xin Ting Zheng, Xiangyu Zhang, Jieming Pan, Aaron Voon-Yew Thean","doi":"10.1021/acs.chemrev.3c00471","DOIUrl":"10.1021/acs.chemrev.3c00471","url":null,"abstract":"<p><p>Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10386-10434"},"PeriodicalIF":51.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. 破解密码:重编原核生物和真核生物的基因脚本,利用非规范氨基酸的力量。
IF 51.4 1区 化学
Chemical Reviews Pub Date : 2024-09-25 Epub Date: 2024-08-09 DOI: 10.1021/acs.chemrev.3c00878
Cosimo Jann, Sabrina Giofré, Rajanya Bhattacharjee, Edward A Lemke
{"title":"Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.","authors":"Cosimo Jann, Sabrina Giofré, Rajanya Bhattacharjee, Edward A Lemke","doi":"10.1021/acs.chemrev.3c00878","DOIUrl":"10.1021/acs.chemrev.3c00878","url":null,"abstract":"<p><p>Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by <i>Escherichia coli</i> and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their <i>in vivo</i> incorporation. This journey offers a glimpse into the promising developments in the years to come.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"10281-10362"},"PeriodicalIF":51.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信