Swatilekha Hazra, Souradeep Dey, Biman B Mandal, Charanya Ramachandran
{"title":"Addition of Microscale Topographies to Silk Fibroin Film Modulates Corneal Endothelial Cell Behavior.","authors":"Swatilekha Hazra, Souradeep Dey, Biman B Mandal, Charanya Ramachandran","doi":"10.1021/acsbiomaterials.5c00200","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00200","url":null,"abstract":"<p><p>Biomimicry in tissue engineering has been used to improve the function of a structure by closely replicating the native architecture. One such method is the introduction of micro- and nanotopographical patterns on biomaterials that mimic the native extracellular environment to enhance cell behavior and function before and after clinical transplantation. Earlier studies from our laboratory had shown that silk fibroin films offer promising potential for corneal endothelial regeneration because of their optimum optical, mechanical, and functional properties. In this study, we hoped to improve upon the design by incorporating micropatterns that are present in the native tissue on the surface of silk films. Fibroin protein from <i>Antheraea assamensis</i> worms was used to prepare films with and without patterns (hexagons and microgrooves) on their surface. The mechanical and optical properties of these films were analyzed by measuring the Young's modulus and light transmittance in the visible spectrum. Cell adhesion and proliferation were determined using the MTT assay and Ki67 staining, respectively. Morphometric analysis of cell shape and size was performed using the ImageJ software, and the expression of markers was visualized and quantified using immunostaining and Western blot. Patterned films demonstrated enhanced elasticity, roughness, and hydrophilicity compared to flat films. No significant difference was observed in cell adhesion between the flat and patterned films. The percentage of proliferating cells was significantly reduced on the patterned films, especially on hexagons. The cell area and circularity on flat films were comparable to microgrooves, whereas cells on hexagons displayed larger and more variable sizes. Notably, the expression of Na-K ATPase (a critical pump protein) was significantly higher in cells grown on microgrooves than on other substrates. These findings suggest that incorporating simple micropatterns on the surface of silk fibroin films can improve the morphology and functional quality of corneal endothelial cells, providing insights into the development of biomaterial-based strategies for endothelial transplantation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Varun Sai Tadimarri, Tanya Amit Tyagi, Cao Nguyen Duong, Sari Rasheed, Rolf Müller, Shrikrishnan Sankaran
{"title":"Adaptations of Gram-Negative and Gram-Positive Probiotic Bacteria in Engineered Living Materials.","authors":"Varun Sai Tadimarri, Tanya Amit Tyagi, Cao Nguyen Duong, Sari Rasheed, Rolf Müller, Shrikrishnan Sankaran","doi":"10.1021/acsbiomaterials.5c00325","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00325","url":null,"abstract":"<p><p>Encapsulation of microbes in natural or synthetic matrices is a key aspect of engineered living materials, although the influence of such confinement on microbial behavior is poorly understood. A few recent studies have shown that the spatial confinement and mechanical properties of the encapsulating material significantly influence microbial behavior, including growth, metabolism, and gene expression. However, comparative studies within different bacterial species under identical confinement conditions are limited. In this study, Gram-negative <i>Escherichia coli</i> Nissle 1917 and Gram-positive <i>Lactiplantibacillus plantarum</i> WCFS1 were encapsulated in hydrogel matrices, and their growth, metabolic activity, and recombinant gene expression were examined under varying degrees of hydrogel stiffness, achieved by adjusting the polymer concentration and chemical cross-linking. Both bacteria grow from single cells into confined colonies, but more interestingly, in <i>E. coli</i> gels, mechanical properties influenced colony growth, size, and morphology, whereas this did not occur in <i>L. plantarum</i> gels. However, with both bacteria, increased matrix stiffness led to higher levels of recombinant protein production within the colonies. By measuring metabolic heat from the bacterial gels using the isothermal microcalorimetry technique, it was inferred that <i>E. coli</i> adapts to the mechanical restrictions through multiple metabolic transitions and is significantly affected by the different hydrogel properties. Contrastingly, both of these aspects were not observed with <i>L. plantarum</i>. These results revealed that despite both bacteria being gut-adapted probiotics with similar geometries, mechanical confinement affects them considerably differently. The weaker influence of matrix stiffness on <i>L. plantarum</i> is attributed to its slower growth and thicker cell wall, possibly enabling the generation of higher turgor pressures to overcome restrictive forces under confinement. By providing fundamental insights into the interplay between mechanical forces and bacterial physiology, this work advances our understanding of how matrix properties shape bacterial behavior. The implications of these findings will aid the design of engineered living materials for therapeutic applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SiRNA-Targeting TGF-β1 Based on Nanoparticle-Coated Ureteral Stents to Inhibit Ureteral Stricture.","authors":"Wei Meng, Ningning Li, Feng Lv, Bo Chen, Shuaijiang Lu, Jiayi Zhang, Tong Zhang, Qianyu Tao, Youlang Zhou, Limin Ma, Yangbo Guan","doi":"10.1021/acsbiomaterials.4c01925","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c01925","url":null,"abstract":"<p><p>Ureteral stricture is a difficult urological problem with no optimal solution and is the result of scar hyperplasia and fibrosis caused by ureteral injury. Preventing the formation of ureteral strictures around drug-loaded ureteral stents is at the heart of the current research. TGF-β1 is a key factor affecting collagen deposition and fiber formation. Therefore, in this study, we established a rabbit ureteral stricture model, implanted a ureteral stent loaded with TGF-β1-siRNA for treatment, and compared the histopathology of ureteral stricture and the protein expression of genes related to the formation of stricture between different groups to test their therapeutic effects. We used sustained- and slow-release properties of the nanoparticles that were confirmed through in vitro experiments. The results of the fluorescence immunoassay showed that siRNA loaded by ureteral stents had high transfection efficiency on human ureter epithelial cells in vivo. In addition, the rabbit ureteral stricture model experiment verified that TGF-β1-siRNA could effectively transfect into ureteral tissues and inhibit the expression of TGF-β1, thereby inhibiting ureteral stricture. At the same time, the images of rabbit gross anatomy specimens showed that the hydronephrosis could also be effectively relieved. In summary, all the results mentioned above suggest that ureteral stents combined with RNA interference technology and a nanoparticle delivery system have broad prospects for clinical application in the suppression of ureteral stricture.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhilin Shen, Fenglin Zhang, Jiawang Yang, Kaihang Zhang, Feng Liang, Han Mu, Li Shi, Jijun Jiang, Yuanzhi Yang, Zhixuan Lin, Jie Gao, Ning Gao
{"title":"Novel Mitochondria-Targeted NIR Cyanine Cy750M-C1 Nanoparticles for Chemotherapy against Triple-Negative Breast Cancer.","authors":"Zhilin Shen, Fenglin Zhang, Jiawang Yang, Kaihang Zhang, Feng Liang, Han Mu, Li Shi, Jijun Jiang, Yuanzhi Yang, Zhixuan Lin, Jie Gao, Ning Gao","doi":"10.1021/acsbiomaterials.5c00343","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00343","url":null,"abstract":"<p><p>Mitochondrial metabolism plays an important role in promoting cancer development, making mitochondria a novel promising target for cancer therapy. Current mitochondria-targeted fluorescent agents can specifically accumulate in the mitochondria of cancer cells and can be applied for cancer imaging and therapy. However, their clinical application is still limited due to the poor solubility and lower tumor-specific distribution. In the present study, we synthesized a novel NIR small-molecule dye, Cy750M-C1, and evaluated its optical properties, mitochondrial distribution, and anticancer activity. We also synthesized nanoparticles loading Cy750M-C1 (Cy750M-C1-FA-NPs) and demonstrated that Cy750M-C1-FA-NPs are specifically targeted to the tumor and dramatically inhibited tumor growth <i>in vivo</i>. The mechanistic study revealed that Cy750M-C1 specifically targeted mitochondria of TNBC cells, subsequently promoting ROS production through inhibition of mitochondrial complexes (complexes I, III, and IV) and OXPHOS and depletion of ATP, leading, in turn, to AMPK activation and Drp1 dephosphorylation mediating the mitochondrial translocation of Drp1 and BAX and ultimately inducing mitochondrial fission, caspase activation, as well as apoptosis. Overall, our data implicate that Cy750M-C1 could be developed as a novel anticancer agent with mitochondria-targeting ability and NIR fluorescence imaging and that Cy750M-C1-FA-NPs could also be considered as promising drug delivery carriers for antitumor agents.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening <i>Isodon rubescens</i>-Derived Vesicles Harvested at Different Periods as Carriers for the Treatment of Colitis-Associated Cancer.","authors":"Junli Zhang, Yaqi Zhang, Xiaoji Ma, Haibo Wang, Chaofeng Zhang, Chengxue Pan","doi":"10.1021/acsbiomaterials.5c00160","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00160","url":null,"abstract":"<p><p>Plant-derived extracellular vesicles are of great significance in practical applications due to their availability, low immunogenicity, and effective carrier performance. <i>Isodon rubescens</i>-derived vesicles (IRDVs) not only have the capability for drug-carrying targeted therapy but also exhibit certain anti-inflammatory and antitumor effects as part of traditional Chinese medicine. The harvest time is closely related to the quality of its medicinal ingredients; however, whether there are differences in the IRDVs harvested at different times has yet to be explored. Herein, we analyzed the morphology and chemical composition of IRDVs collected at different time points and identified six-month-harvested IRDVs as the most suitable delivery vector. To further enhance their therapeutic potential, we modified the IRDVs with deoxycholic acid to facilitate the oral delivery of the chemotherapy drug doxorubicin (DOX). This novel nanotherapy, termed DOX-IRDVs@DA, was developed as an oral targeted treatment for colitis-associated cancer (CAC). The results demonstrated that DOX-IRDVs@DA effectively delivered DOX to colon tumor 26 (CT26) cells, induced cancer cell apoptosis by modulating apoptosis-related proteins, and inhibited the proliferation of CT26 cells. In vivo studies in a mouse model of CAC revealed that DOX-IRDVs@DA achieved superior targeted therapeutic effects, reducing the number of colonic nodules, restoring the structural integrity of the colon, and causing minimal systemic toxicity.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2653-2663"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Sieberath, D Eglin, C M Sprecher, A M Ferreira, P Gentile, K Dalgarno, E Della Bella
{"title":"Developing a Bone-Mimicking Microenvironment: Surface Coating Method for Investigating Bone Remodeling <i>in Vitro</i>.","authors":"A Sieberath, D Eglin, C M Sprecher, A M Ferreira, P Gentile, K Dalgarno, E Della Bella","doi":"10.1021/acsbiomaterials.4c02330","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02330","url":null,"abstract":"<p><p>To investigate bone formation and resorption <i>in vitro</i>, it is essential to create bone-like microenvironments on cell culture substrates. Here, we present a coating technique to create such a microenvironment on cell culture plastic (CCP) multiwell plates for studying bone remodeling <i>in vitro</i>. Utilizing this coating, we have developed an assay to simultaneously measure cellular mineral formation and resorption in osteoblast and osteoclast coculture models. A composite matrix of collagen type I and carbonated apatitic calcium phosphate was deposited onto CCP in a reproducible manner using a 10× simulated body fluid solution (SBF) supplemented with type I collagen. qPCR analysis and cellular imaging using fluorescence microscopy demonstrated the promotion of osteogenic differentiation, cell attachment, and proliferation of human bone-marrow-derived mesenchymal stem cells on coated substrates. Moreover, human bone-marrow-derived mononuclear cells successfully differentiated into osteoclasts and resorbed the coated substrate. Using the developed coating, an osteoblast and osteoclast coculture system was established, enabling real-time monitoring of mineral formation and resorption. By providing a controlled and physiologically relevant <i>in vitro</i> model, this assay facilitates the screening of therapeutic compounds, the study of bone cell interactions, and the identification of factors influencing bone remodeling, thereby enhancing translational research in bone health.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2690-2704"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143952493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikala C Mueller, Rachel Blomberg, Alicia E Tanneberger, Duncan Davis-Hall, Keith B Neeves, Chelsea M Magin
{"title":"Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.","authors":"Mikala C Mueller, Rachel Blomberg, Alicia E Tanneberger, Duncan Davis-Hall, Keith B Neeves, Chelsea M Magin","doi":"10.1021/acsbiomaterials.5c00123","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00123","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for <i>in vitro</i> modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2935-2945"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krupansh Desai, Joëlle Mekontso, Ketaki Deshpande, Sara Trujillo
{"title":"Preclinical Assessment of Living Therapeutic Materials: State-of-Art and Challenges.","authors":"Krupansh Desai, Joëlle Mekontso, Ketaki Deshpande, Sara Trujillo","doi":"10.1021/acsbiomaterials.5c00247","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00247","url":null,"abstract":"<p><p>Living Therapeutic Materials represent a promising technology to tackle therapeutic problems that classical materials cannot address. Despite the advancements on new functions of these devices, new applications, and new fabrication methods, the preclinical evaluation of Living Therapeutic Materials is still very limited and new challenges appear when incorporating the living devices in contact with the host. This is a critical bottleneck in the path to translation to the clinic. Therefore, we have compiled the literature on Living Therapeutic Materials, with a focus on microorganism-based living therapeutic materials, and summarized the investigations carried out to assess their biocompatibility, safety, and efficacy. We have split the investigations in three parts: <i>in vitro</i>, <i>ex vivo</i>, and <i>in vivo</i> assessments, where we describe common practices and remaining challenges.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2584-2600"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Platelet Extracellular Vesicles as Natural Delivery Vehicles for Mitochondrial Dysfunction Therapy?","authors":"Hsien Chang Yeh, Kirti Gupta, Ya-Hsuan Lu, Abinaya Srinivasan, Liling Delila, Nguyen Tran Hai Yen, Ariunjargal Nyam-Erdene, Thierry Burnouf","doi":"10.1021/acsbiomaterials.5c00473","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.5c00473","url":null,"abstract":"<p><p>Mitochondria are vital for energy production, metabolic regulation, and cellular signaling. Their dysfunction is strongly implicated in neurological, cardiovascular, and muscular degenerative diseases, where energy deficits and oxidative stress accelerate disease progression. Platelet extracellular vesicles (PEVs), once called \"platelet dust\", have emerged as promising agents for mitigating mitochondrial dysfunction. Like other extracellular vesicles (EVs), PEVs carry diverse molecular cargo and surface markers implicated in disease processes and therapeutic efficacy. Notably, they may possibly contain intact or partially functional mitochondrial components, making them tentatively attractive for targeting mitochondrial damage. Although direct research on PEVs-mediated mitochondrial rescue remains limited, current evidence suggests that PEVs can modulate diseases associated with mitochondrial dysfunction and potentially enhance mitochondrial health. This review explores the therapeutic potential of PEVs in neurodegenerative and cardiovascular disorders, highlighting their role in restoring mitochondrial health. By examining recent advancements in PEVs research, we aim to shed light on novel strategies for utilizing PEVs as therapeutic agents. Our goal is to underscore the importance of further fundamental and applied research into PEVs-based interventions, as innovative tools for combating a wide range of diseases linked to mitochondrial dysfunction.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2601-2621"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mussel-Inspired MXene/Antimicrobial Peptide-Integrated Photosensitive Poly(vinyl alcohol)-Based Hydrogel with Antibacterial, Anti-Inflammatory, and Electroactive Properties for Accelerated Wound Healing.","authors":"Yu Sun, Qingping Liu, Zhenglei Yu, Luquan Ren, Ziyan Zhang","doi":"10.1021/acsbiomaterials.4c02130","DOIUrl":"https://doi.org/10.1021/acsbiomaterials.4c02130","url":null,"abstract":"<p><p><b>Backgrounds</b>: The buildup of reactive oxygen species (ROS) in infected wounds triggers an excessive inflammatory response, while the overuse of antibiotics has contributed to increased bacterial resistance. Therefore, developing wound dressings that effectively eliminate ROS and inhibit bacterial growth is crucial. <b>Methods</b>: Inspired by mussel-derived proteins, we developed a polydopamine (PDA)-grafted MXene (PDA@MXene) and 3,4-dihydroxyphenylalanine-PonG1 (DOPA-PonG1)-modified photosensitive poly(vinyl alcohol) (PVA) hydrogel as a wound dressing. PDA@MXene was synthesized through dopamine self-polymerization on the MXene surface, while tyrosine hydroxylation was used to introduce DOPA into the antibacterial peptide ponericin G1 (PonG1). The hydrogel and its components were characterized, and their morphology was examined. The hydrogel's hemostatic ability, mechanical properties, and conductivity were evaluated. In vitro studies systematically evaluated antioxidative effects, antibacterial activity, biocompatibility, and expression of tissue regeneration-related factors. An infected full-thickness skin defect model was established in vivo, and different hydrogel treatments were applied. The wound-healing rate was then measured, followed by histological analysis using hematoxylin and eosin, Masson, Sirius Red, and immunofluorescence staining to investigate the healing mechanism. <b>Results:</b> The DOPA sequence enhanced PonG1 stability on the hydrogel surface, leading to sustained antibacterial ability. PDA@MXene significantly improved the hydrogel's conductivity and mechanical strength. Notably, the combined effects of DOPA-PonG1 and PDA@MXene contributed to enhanced antibacterial and ROS-scavenging properties. In vivo findings demonstrated that the DOPA-PonG1/PDA@MXene/PVA hydrogel accelerated infected wound healing by promoting angiogenesis and collagen deposition while reducing excessive inflammation. This study presents an innovative approach for treating infected wound defects and holds promise for clinical applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2857-2874"},"PeriodicalIF":5.4,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}