Raewyn M Town, Herman P van Leeuwen, Jérôme F L Duval
{"title":"Sorption kinetics of metallic and organic contaminants on micro- and nanoplastics: remarkable dependence of the intraparticulate contaminant diffusion coefficient on the particle size and potential role of polymer crystallinity.","authors":"Raewyn M Town, Herman P van Leeuwen, Jérôme F L Duval","doi":"10.1039/d4em00744a","DOIUrl":"https://doi.org/10.1039/d4em00744a","url":null,"abstract":"<p><p>We developed a mechanistic diffusion model to describe the sorption kinetics of metallic and organic contaminants on nano- and micro-plastics. The framework implements bulk depletion processes, transient fluxes, and fully adaptable particle/water boundary conditions, <i>i.e.</i> not only the typically assumed simple linear Henry regime, which is not applicable to many contaminant-particle situations. Thus, our model represents a flexible and comprehensive theory for the analysis of contaminant sorption kinetics, which goes well beyond the traditional empirical pseudo first or second order kinetic equations. We applied the model to the analysis of a large body of literature data on the equilibrium and kinetic features of sorption of a wide range of contaminants by diverse types and sizes of plastic particles. Results establish the paramount importance of sorption boundary conditions (Henry, Langmuir, or Langmuir-Freundlich) and reveal interesting and often overlooked sorption features that depend on the plastic particle size and the extent to which the target compound is depleted in the bulk medium. The greater degree of polymer crystallinity reported for smaller particles may underlie our findings that the intraparticulate contaminant diffusion coefficient decreases with a decreasing particle size. We establish a universal law to predict the sorption kinetics and diffusion of any compound within any plastic phase, which has far reaching importance across many domains relevant to the environment and human health.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey M Hudson, Han Cao, Wenqing Xu, Paul G Tratnyek
{"title":"Electron exchange capacity of dissolved natural organic matter: further method development and interpretation using square wave voltammetry in dimethyl sulfoxide.","authors":"Jeffrey M Hudson, Han Cao, Wenqing Xu, Paul G Tratnyek","doi":"10.1039/d4em00555d","DOIUrl":"https://doi.org/10.1039/d4em00555d","url":null,"abstract":"<p><p>Most measurements of the electron exchange capacity (EEC) of natural organic matter (NOM) have been done in water using mediated chronoamperometry (MCA), which gives precise results that are believed to be representative of the samples' current redox condition, but the broader significance of these EECs is less clear. In a recent study, we described a novel but complementary electrochemical approach to quantify EECs of 10 pyrogenic dissolved organic matter (pyDOM) and 6 standard/reference natural organic matter (NOM) materials without mediation using square-wave voltammetry (SWV) in dimethyl sulfoxide (DMSO). Comparison of the results obtained by MCA and SWV showed that SWV in DMSO gave larger EECs than MCA, by several-fold for NOM and 1-2 orders of magnitude for pyDOM. In this study, we describe an improved protocol for calibration of the SWV/DMSO method, which largely eliminates the difference in EECs from SWV and MCA for the standard/reference NOM samples. The results show that values obtained <i>via</i> the SWV method depend on the specific redox standards used for calibration (<i>i.e.</i>, calibrant model compounds), with slopes that span 1.5 orders of magnitude due to variations in current response factors. For pyDOM, the higher values of EEC obtained by SWV were further verified and rationalized. Like the calibrant model compounds, it is proposed that the relatively large EECs for some pyDOM samples from high-temperature chars reflect a combination of hydrodynamic influences in our electrochemical cell, primarily related to electrode surface area to volume ratio and pyDOM size. A detailed explanation of the calibration method, choice of working electrode, DOM sorption effects, and cosolvent effects are discussed. The results obtained with this method suggest that the capacity of NOM for donating, accepting, and storing elections is an operationally defined property, the significance of which will depend on application, <i>e.g.</i>, to carbon, metal, or nutrient cycling, pollutant attenuation, <i>etc.</i></p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cailing Shi, Jing Zhang, Haibo Zhang, Lei Xu, Wenjun Xie, Weiming Li, Lichang Zhang, Yu Sun
{"title":"Straw mineralization and carbon dioxide emissions in soils with different salinity levels.","authors":"Cailing Shi, Jing Zhang, Haibo Zhang, Lei Xu, Wenjun Xie, Weiming Li, Lichang Zhang, Yu Sun","doi":"10.1039/d4em00698d","DOIUrl":"https://doi.org/10.1039/d4em00698d","url":null,"abstract":"<p><p>Straw application is widely used to reclaim saline soils. However, the characteristics of straw mineralization and its induced priming effects (PE) in saline soil are largely unknown. Thus, we conducted a 180-day saline soil incubation experiment to observe the characteristics of straw mineralization and CO<sub>2</sub> emissions. Four salinity levels, <i>i.e.</i>, 3.0 g kg<sup>-1</sup> (BS), 5.0 g kg<sup>-1</sup> (LS), 10.0 g kg<sup>-1</sup> (MS), and 15.0 g kg<sup>-1</sup> (HS), were established, to which <sup>13</sup>C-labeled maize straw was added at a rate of 5.0%. Results showed that the straw mineralization rate and the amount of potentially mineralized straw significantly decreased with increasing salinity (<i>p</i> < 0.05). Compared with BS, the cumulative CO<sub>2</sub> emissions, PE, and the amount of mineralized straw in LS, MS, and HS decreased by 3.6%-26.8%, 3.4%-26.5%, and 2.7%-15.6%, respectively. Simultaneously, increasing soil salinity prompted the earlier occurrence of the peak straw mineralization and PE. The contribution of straw mineralization to CO<sub>2</sub> emissions on the 1st day significantly decreased with rising salinity levels (<i>p</i> < 0.05), while the opposite change was observed from 5 days to 120 days. Although PE significantly decreased with increasing salinity, the duration of the effect of straw input on soil organic matter mineralization increased substantially in high-salinity soils. These findings reveal the influence of soil salinity levels on the straw mineralization process and CO<sub>2</sub> emission, which will help us assess and boost carbon sequestration in saline soils under straw input conditions.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alishan Ahmed, Amanda K Hohner, Peter R Robichaud, Idil Deniz Akin
{"title":"Water quality implications of post-wildfire erosion control with polymeric additives.","authors":"Alishan Ahmed, Amanda K Hohner, Peter R Robichaud, Idil Deniz Akin","doi":"10.1039/d4em00334a","DOIUrl":"https://doi.org/10.1039/d4em00334a","url":null,"abstract":"<p><p>Post-wildfire erosion to downstream surface waters can deteriorate water quality to levels that can create challenges for aquatic life and drinking water treatment. Polymeric additives, xanthan gum (XG) and polyacrylamide (PAM), have been demonstrated to be effective for controlling erosion in the presence of hydrophilic ash. However, with repeated rainfall applications, some of the applied XG and PAM may mobilize with the runoff and enter surface waters, which may pose water quality concerns. In this study, indoor rainfall simulation experiments were performed on plots containing wildfire-burned soil overlaid by hydrophilic ash collected after the 2021 Green Ridge Wildfire near Walla Walla, WA. The plots were treated with three concentrations (11, 33, and 60 kg ha<sup>-1</sup>) of XG or PAM and subjected to three wet-dry cycles. Runoff water samples were collected at 5 min intervals during each wetting event. The pH, electrical conductivity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and settled water turbidity (SWT) were measured for runoff water samples. The presence of XG in runoff from XG-treated plots increased SWT by up to 247% and DOC to as high as 16.6 mg<sub>C</sub> L<sup>-1</sup>. PAM treatment also increased DOC (up to 24.5 mg<sub>C</sub> L<sup>-1</sup>) and TDN (up to 5.8 mg<sub>N</sub> L<sup>-1</sup>) in runoff. DOC and TDN concentrations in runoff from treated plots increased with an increase in treatment concentrations and were generally greatest in the first wetting event. The results suggest that benefits of using polymeric additives for erosion reduction should be evaluated together with an assessment of dilution of downstream water bodies to alleviate the negative impacts of the additives on downstream water quality.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Wilschnack, Elise Cartmell, Vera Jemina Sundström, Kyari Yates, Bruce Petrie
{"title":"Enantiomeric fraction evaluation for assessing septic tanks as a pathway for chiral pharmaceuticals entering rivers.","authors":"Kai Wilschnack, Elise Cartmell, Vera Jemina Sundström, Kyari Yates, Bruce Petrie","doi":"10.1039/d4em00715h","DOIUrl":"https://doi.org/10.1039/d4em00715h","url":null,"abstract":"<p><p>Septic tanks (STs) are an important pathway for chiral pharmaceuticals entering rivers. Therefore, the enantiospecific compositions of 25 chiral human pharmaceuticals and metabolites were investigated in five community STs over 12 months in Scotland. Large variability in pharmaceutical concentrations and enantiomeric fractions (EFs) were observed in wastewater owing to the small contributing populations. Pharmaceuticals prescribed in enantiopure and racemic forms had the greatest EF variability. For example, citalopram generally had EFs < 0.5 through consumption of the racemate and preferential metabolism of <i>S</i>(+)-citalopram. However, several samples had EFs > 0.7 from comparatively greater use of enantiopure escitalopram. Direct down-the-drain disposal was indicated for citalopram and venlafaxine, where elevated concentrations and pharmaceutical-metabolite-ratios were observed (at least 19-fold). Overall, EF differences between influent and effluent were small, suggesting no enantioselectivity occurred in anaerobic environments of STs. Therefore, EFs in ST effluent were notably different to those from aerobic wastewater treatment works (WWTWs). For instance, naproxen EFs (≥0.990 when both enantiomers detected) were like those of untreated wastewater but outside the range for aerobic WWTWs effluent caused by a lack of inversion from <i>S</i>(+)- to <i>R</i>(-)-naproxen in STs. This suggests naproxen can be used to identify its pathway into the environment, which was strengthened by river water microcosm studies. At the study locations the environmental risk of enantiomers was low due to sufficient dilution of effluents. Nevertheless, greater impact of individual practices towards medicine use and disposal on ST wastewater and receiving water composition demands enantioselective analysis to better appreciate the sources, fate and impact of pharmaceuticals.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Yu, Wei Chu, Leilihe Zhang, Youcai Zhao, Jie Ma
{"title":"Spatiotemporal distribution characteristics of physicochemical properties of waste plastics with different landfill age and depth.","authors":"Fei Yu, Wei Chu, Leilihe Zhang, Youcai Zhao, Jie Ma","doi":"10.1039/d4em00799a","DOIUrl":"https://doi.org/10.1039/d4em00799a","url":null,"abstract":"<p><p>Plastics are widely used for their excellent properties, and the primary disposal method is sanitary landfilling. Waste plastics, persisting in landfills for long periods, change their surface physicochemical properties. However, research on the physicochemical changes of plastics after landfilling is scarce. This study analyzes the physicochemical characteristics of discarded plastics in landfills, focusing on depths (2-8 meters) and ages (0-30 years). The spatiotemporal distribution of waste plastics was studied using the 3D-Smoothe model. The results revealed that polypropylene (PP) and polyethylene (PE) were the predominant constituents of landfilled plastics. The carbonyl index (CI) and hydroxyl index (HI) accelerated with landfill age but increased and then decreased with landfill depth. Furthermore, the hydrophilicity of waste plastics increases with the landfill age, which is realized as 2 m > 5 m < 8 m in depth. The 3D model analysis indicates that PP displays a wavy downward trend in its spatiotemporal distribution, whereas PE exhibits a vortex-like downward trend. The toughness and strength of waste plastics rapidly decline in the early stages of landfilling and then stabilize. However, variations are noted at a depth of 5 m. The influence of landfill age on the mechanical properties of waste plastics is more significant than that of landfill depth by 3D model analysis. As the age and depth of landfills increase, there is a corresponding rise in the number of surface cracks and defects, a rise in surface roughness, and an increase in the abundance of surface elements. This study provides a scientific basis for understanding the environmental risks of landfilled waste plastics.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution and risk assessment of antibiotic resistance genes in swine farm wastewater and its surrounding environments: from soil to water.","authors":"Haiyue Ma, Jinping Du, Ting Xu, Daqiang Yin, Xiaoling Fang, Xueping Guo","doi":"10.1039/d4em00687a","DOIUrl":"https://doi.org/10.1039/d4em00687a","url":null,"abstract":"<p><p>Livestock farms are important reservoirs of antibiotic resistance genes (ARGs). However, how wastewater irrigation from swine farms affects the surrounding environments, especially water bodies, is not fully understood. In this study, the occurrence pattern and potential risk of ARGs and mobile gene elements (MGEs) in a biogas slurry from a large-scale swine farm and its surrounding environments were investigated. Genes conferring resistance to tetracycline, sulfonamide, and multidrugs were found to be predominant in the biogas slurry, while sulfonamide and multidrug resistance genes exhibited the highest abundance in the surrounding environments. Overall, the total relative abundance of ARGs in the biogas slurry was 1.4-7 fold higher than that in the surrounding environments. PCA revealed the cluster pattern of samples based on sample types and a better correlation between swine farm wastewater and groundwater. A higher abundance of ARGs was found in groundwater farther away from the swine farm than that in nearby groundwater and surface water. Correlation analysis indicated that ARGs had a significant positive correlation with MGEs at each sampling site. The most abundant MGE <i>IS6100</i> may mediate the horizontal transfer of <i>lnuA</i> from the swine farm to nearby groundwater. Considering the abundance, mobility, host pathogenicity, and the co-occurrence patterns with MGEs of ARGs, nine high-risk ARGs, namely, <i>aadA2</i>, <i>aadA17</i>, <i>aac (6')-Ib</i>, <i>tetX</i>, <i>tetG</i>, <i>tetM</i>, <i>oprJ</i>, <i>sul1</i>, and <i>ermF</i>, were screened in the environment. Our results indicated that the swine farm wastewater had long-term effects on the surrounding surface water and groundwater and that MGEs can serve as a medium that contributes to the widespread distribution of various ARGs. This study provides a theoretical basis for the risk assessment of ARGs in farms and the reuse of farm wastewater.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isla Wrightson, Maryam Tabatabaei Anaraki, István Fekete, Zsolt Kotroczó, Kate Lajtha, Myrna J Simpson
{"title":"Ecological properties uniquely dictate molecular-level soil organic matter composition in a temperate forest in Central Europe with variation in litter deposition.","authors":"Isla Wrightson, Maryam Tabatabaei Anaraki, István Fekete, Zsolt Kotroczó, Kate Lajtha, Myrna J Simpson","doi":"10.1039/d4em00462k","DOIUrl":"https://doi.org/10.1039/d4em00462k","url":null,"abstract":"<p><p>Global climate change has increased temperatures and elevated atmospheric CO<sub>2</sub> concentrations in many forests, which can impact plant productivity. This changes both the quantity and quality of litterfall and root inputs to soil organic matter (SOM) and alters soil carbon (C). This study examined how litter exclusions (No Litter, No Roots, and No Inputs) and additions (Double Litter and Double Wood) altered soil C dynamics and SOM composition. Soil samples were collected from a temperate forest in Hungary (the Síkfőkút Experimental Forest) after 20 years of experimental litter manipulation. Elemental analysis, targeted SOM compound techniques, nuclear magnetic resonance (NMR) spectroscopy and microbial biomass and community composition measurements were used to characterize alterations to SOM stabilization and destabilization processes. Our results contrast other similar long-term detrital manipulation experiments of the same timeframe, with increases in soil C for both Double Litter and Double Wood, and evidence for enhanced microbial decomposition still occurring. In North America, aboveground inputs are more influential for soil C stabilization in coniferous forests, while belowground inputs are more important in temperate forests. However, this temperate forest in Central Europe is unique in that the specific ecological properties (such as litter quality, mean annual temperature and precipitation) dictated these processes instead. This highlights the differing responses detrital manipulation to forest soils across varying climatic and edaphic gradients and the sensitivity of SOM composition to changes in detrital inputs in different ecosystems.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongxu Zhou, Salma Tabassum, Jun Li, Hüseyin Altundag
{"title":"<i>In situ</i> remediation of eutrophic Wolong Lake sediments using novel PVA-SA-biochar and PVA-SA-zeolite embedded immobilized indigenous microorganisms: a pilot study.","authors":"Dongxu Zhou, Salma Tabassum, Jun Li, Hüseyin Altundag","doi":"10.1039/d4em00580e","DOIUrl":"https://doi.org/10.1039/d4em00580e","url":null,"abstract":"<p><p>Sediment restoration has become a key link in river and lake pollution control. This present study investigated the selection of dominant microbial bacteria, the selection and optimization of microbial immobilized carrier materials, and the effect of embedded immobilized microbial <i>in situ</i> remediation of bottom sediments based on the actual restoration pilot project of eutrophic Wolong Lake. The composite of denitrifying and photosynthetic bacteria at a ratio of 1 : 2 showed the best performance with COD, TN, and TP removal efficiencies of 74.86%, 65.2%, and 67.5%, respectively. Denitrifying bacteria to photosynthetic bacteria optimal composite bacterial solutions with polyvinyl alcohol-sodium alginate (PVA-SA), PVA-SA-zeolite and PVA-SA-biochar carriers were selected, and the effects of different carriers were analyzed and compared in terms of multiple characteristics. PVA-SA-biochar carriers showed the best ammonia-nitrogen transfer performance, mass transfer coefficient (0.681 × 10<sup>-9</sup> m<sup>2</sup> s<sup>-1</sup>), specific surface area (76.3 m<sup>2</sup> MB g<sup>-1</sup>) and performed best in mechanical strength and chemical stability. The effects of biochar, PVA and SA contents on COD removal (<i>Y</i>) were analyzed using the 3D-response surface methodology. Biodegradation capacity (<i>G</i>-value) increased from 0.68 × 10<sup>-3</sup> kg (kg h)<sup>-1</sup> at the beginning of the test to 2.32 × 10<sup>-3</sup> kg (kg h)<sup>-1</sup> after 80 days of the remediation test with a growth rate of 258.82%. The water quality index has significantly improved, indicating a good restoration effect. Alpha diversity analysis showed that the Shannon and Simpson indexes increased and decreased. The relative abundance of Bacteroidota, Proteobacteria, Planctomycetota and Chloroflexi, closely related to the denitrification, decarbonization and phosphorus removal, increased while Chloroflexi decreased compared with before restoration. Embedded immobilized microbial technology significantly enhances the quality of sediment mud and the overlying water. In the long term, this approach does not release toxic substances into water bodies, thus fostering biodiversity and promoting ecological restoration. It represents a novel restoration strategy that contributes positively to environmental sustainability.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myron L Lard, Sarah E Eichler, Peng Gao, Kuldeep Singh, Joseph D Ortiz, Robert L Cook, Slawomir Lomnicki, Stephania A Cormier, Jennifer Richmond-Bryant
{"title":"Soil contamination by environmentally persistent free radicals and dioxins following train derailment in East Palestine, OH.","authors":"Myron L Lard, Sarah E Eichler, Peng Gao, Kuldeep Singh, Joseph D Ortiz, Robert L Cook, Slawomir Lomnicki, Stephania A Cormier, Jennifer Richmond-Bryant","doi":"10.1039/d4em00609g","DOIUrl":"10.1039/d4em00609g","url":null,"abstract":"<p><p>The Norfolk Southern train derailment on February 3, 2023, in East Palestine, Ohio, prompted concerns about the health impacts from the chemical spills and open-air combustion. We hypothesize that the combustion of chemicals, including vinyl chloride, in the presence of transition-metal oxides from the train, tracks, and soil minerals were conducive to the formation of hazardous byproducts including environmentally persistent free radicals (EPFRs), dioxins, and furans. We also hypothesize that these harmful byproducts of combustion have a shared origin and thus will have elevated concentrations in soil samples collected close to the derailment site when compared to concentrations in background soils. This study examined the co-occurrence of these soil contaminants from samples collected August 14-17, 2023, within a two-mile radius of the incident site to assess the concentration of EPFRs, dioxins, and furans. We measured elevated levels of EPFRs (average: 3.00 × 10<sup>17</sup> spins per g) and dioxin/furan toxic equivalence (TEQ) (average: 32.8 pg g<sup>-1</sup>) near the derailment area compared to background levels (EPFRs: 1.33 × 10<sup>17</sup> spins per g; TEQ: 10.7 pg g<sup>-1</sup>). Significant positive correlations (<i>p</i> < 0.002) between EPFRs and specific dioxin/furan congener concentrations (0.63-0.74) indicated robust associations between EPFRs and dioxin/furan congeners, the first such observations in field-collected soil samples. These results highlight the environmental health impact of the derailment and associated combustion, underscoring the need for comprehensive longitudinal monitoring and remediation efforts in the affected area and similar industrial accident sites. This study also offers insights into the formation mechanisms and persistence of EPFRs, dioxins, and furans.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}