Chuanghe Miao, Hui Rong, Xiaoqing Wei, Jianying Shang, Hu Zhou and Yizhong Lv
{"title":"Reduction of hexavalent chromium by compost-derived dissolved organic matter†","authors":"Chuanghe Miao, Hui Rong, Xiaoqing Wei, Jianying Shang, Hu Zhou and Yizhong Lv","doi":"10.1039/D4EM00280F","DOIUrl":"10.1039/D4EM00280F","url":null,"abstract":"<p >Compost-derived dissolved organic matter (DOM<small><sub>C</sub></small>) is a heterogeneous assemblage of different redox-active organic molecules. We hypothesize that DOM<small><sub>C</sub></small> can interact with Cr(<small>VI</small>) and reduce it to Cr(<small>III</small>), thereby influencing the dynamics of Cr(<small>VI</small>) in soil and aquatic environments. Here, DOM<small><sub>C</sub></small>, along with soil humic substances isolated from red soil and black soil, were fractionated into humic acid fractions (<em>i.e.</em>, HA<small><sub>C</sub></small>, HA<small><sub>B</sub></small>, and HA<small><sub>R</sub></small>) and fulvic acid fractions (<em>i.e.</em>, FA<small><sub>C</sub></small>, FA<small><sub>B</sub></small>, and FA<small><sub>R</sub></small>), respectively. The reduction and interaction between Cr(<small>VI</small>) and the six organic matter fractions were investigated. The results showed that the total Cr(<small>VI</small>) reduction capacity (TRC) of the six organic matter fractions was 26.77–49.34 μM Cr(<small>VI</small>) per mg OM. The TRC of HA fractions was 35.54–49.34 μM Cr(<small>VI</small>) per mg OM, which exceeded that of FA fractions (26.77–31.29 μM Cr(<small>VI</small>) per mg OM). DOM<small><sub>C</sub></small> had a HA/FA ratio of 0.64, which was higher than that of black soil humic substance (0.59) and red soil humic substance (0.20). The sum of the TRC of DOM<small><sub>C</sub></small> was 35.57 μM Cr(<small>VI</small>) per mg OM, which was larger than that of black soil humic substance (32.87 μM Cr(<small>VI</small>) per mg OM) and red soil humic substance (33.01 μM Cr(<small>VI</small>) per mg OM). The TRC was positively correlated with TOC, TN, phenol C, alkyl C, and aromatic C contents and negatively correlated with E<small><sub>2</sub></small>/E<small><sub>3</sub></small>, O-alkyl C, and carboxyl C contents. The reduction of Cr(<small>VI</small>) at pH 6 was negligible, whereas 32–67% Cr(<small>VI</small>) was reduced at pH 2. The Cr(<small>VI</small>) reduction capacities (RC2, RC2, and RC6) at pH 2–6 were positively correlated (<em>R</em><small><sup>2</sup></small> > 0.71) with phenol C. Spectral analysis showed that there was no obvious complexation between Cr(<small>VI</small>) and the six organic matter fractions at pH 6, and thus the reduction of Cr(<small>VI</small>) was negligible, but solution pH could affect the accessibility of organic molecules to Cr(<small>VI</small>) and thus influence Cr(<small>VI</small>) reduction.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2297-2308"},"PeriodicalIF":4.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang, Jun Yang, Guishan Yang, Chao Wu and Jie Yu
{"title":"Correction: How do ecosystem service functions affect ecological health? Evidence from the Yangtze River Economic Belt in China","authors":"Wei Wang, Jun Yang, Guishan Yang, Chao Wu and Jie Yu","doi":"10.1039/D4EM90052A","DOIUrl":"10.1039/D4EM90052A","url":null,"abstract":"<p >Correction for ‘How do ecosystem service functions affect ecological health? Evidence from the Yangtze River Economic Belt in China’ by Wei Wang <em>et al.</em>, <em>Environ. Sci.: Processes Impacts</em>, 2024, https://doi.org/10.1039/D4EM00296B.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2320-2320"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em90052a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongcan Jiang, Yi Wang, Yinlong Shao, Dong Yang, Minli Guo, Yu Wen, Hong Tang and Guanglong Liu
{"title":"Molecular-scale investigation on the photochemical transformation of dissolved organic matter after immobilization by iron minerals with FT-ICR MS†","authors":"Yongcan Jiang, Yi Wang, Yinlong Shao, Dong Yang, Minli Guo, Yu Wen, Hong Tang and Guanglong Liu","doi":"10.1039/D4EM00288A","DOIUrl":"10.1039/D4EM00288A","url":null,"abstract":"<p >The interaction between dissolved organic matter (DOM) and iron minerals has a significant effect on its stabilization and preservation in the environment. In this study, iron minerals with different crystal forms (crystalline goethite and amorphous ferrihydrite) were selected to investigate the photochemical transformation process for DOM immobilized on iron minerals under simulated sunlight irradiation at the molecular scale with the help of Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that a total of 7148 molecules were detected in alkaline-extractable sedimentary DOM, of which 38.8% and 36.2% were adsorbed by ferrihydrite and goethite, respectively, while there was no selectivity difference between the two iron minerals in terms of DOM adsorption. After simulated sunlight irradiation, the DOM adsorbed by goethite was significantly degraded (58.3%), in which the H/C ratio of the mineral-immobilized DOM increased and the O/C ratio decreased, and the photodegradation primarily involved DOM molecules with high Kendrick mass defect (KMD) values. The results confirmed that the iron mineral types play an important role in the transportation and transformation of DOM, which adds to the understanding of the fate of DOM in natural environments.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2279-2287"},"PeriodicalIF":4.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie A. Münch, Andreas Voegelin, Luis Carlos Colocho Hurtarte, Jörg Göttlicher and Thilo Behrends
{"title":"Combining sequential extractions with bulk and micro X-ray spectroscopy to elucidate iron and phosphorus speciation in sediments of an iron-treated peat lake†‡","authors":"Melanie A. Münch, Andreas Voegelin, Luis Carlos Colocho Hurtarte, Jörg Göttlicher and Thilo Behrends","doi":"10.1039/D4EM00402G","DOIUrl":"10.1039/D4EM00402G","url":null,"abstract":"<p >In shallow lakes, mobilization of legacy phosphorus (P) from the sediments can be the main cause for persisting eutrophication after reduction of external P input. In-lake remediation measures can be applied to reduce internal P loading and to achieve ecosystem recovery. The eutrophic shallow peat lake Terra Nova (The Netherlands) was treated with iron (Fe) to enhance P retention in the sediment. This treatment, however, intensified seasonal internal P loading. An earlier study suggested that Fe addition led to increased P binding by easily-reducible Fe(<small>III</small>) associated with organic matter (OM), which readily releases P when bottom waters turn hypoxic. In this complementary study, bulk and micro Fe K-edge and P K-edge X-ray absorption spectroscopy and micro-focused X-ray fluorescence spectroscopy were applied to characterize the P hosting Fe(<small>III</small>) pool. Combined with sequential extraction data, the synchrotron X-ray analyses revealed that a continuum of co-precipitates of Fe(<small>III</small>) with calcium, phosphate, manganese and organic carbon within the OM matrix constitutes the reducible Fe(<small>III</small>) pool. The complementary analyses also shed new light on the interpretation of sequential extraction results, demonstrating that pyrite was not quantitatively extracted by nitric acid (HNO<small><sub>3</sub></small>) and that most of the Fe(<small>II</small>) extracted by hydrochloric acid (HCl) originated from phyllosilicate minerals. Formation of an amorphous inorganic–organic co-precipitate upon Fe addition constitutes an effective P sink in the studied peaty sediments. However, the high intrinsic reactivity of this nanoscale co-precipitate and its fine distribution in the OM matrix makes it very susceptible to reductive dissolution, leading to P remobilization under reducing conditions.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 3","pages":" 563-585"},"PeriodicalIF":4.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/em/d4em00402g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi Y Chang, Clara M A Eichler, Elaine A Cohen Hubal, Jason D Surratt, Glenn C Morrison, Barbara J Turpin
{"title":"Exposure to per- and polyfluoroalkyl substances (PFAS) in North Carolina homes: results from the indoor PFAS assessment (IPA) campaign.","authors":"Naomi Y Chang, Clara M A Eichler, Elaine A Cohen Hubal, Jason D Surratt, Glenn C Morrison, Barbara J Turpin","doi":"10.1039/d4em00525b","DOIUrl":"10.1039/d4em00525b","url":null,"abstract":"<p><p>Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes. Ionic and neutral PFAS measurements reported previously and ionic PFAS measurements reported herein for drinking water (1.4-34.1 ng L<sup>-1</sup>), dust (202-1036 ng g<sup>-1</sup>), and surfaces (4.1 × 10<sup>-4</sup>-1.7 × 10<sup>-2</sup> ng cm<sup>-2</sup>) were used to conduct a residential indoor PFAS exposure assessment. We considered inhalation of air, ingestion of drinking water and dust, mouthing of clothing (children only), and transdermal uptake from contact with dust, air, and surfaces. Average intake rates were estimated to be 3.6 ng kg<sup>-1</sup> per day (adults) and 12.4 ng kg<sup>-1</sup> per day (2 year-old), with neutral PFAS contributing over 80% total PFAS intake. Excluding dietary ingestion, which was not measured, inhalation contributed over 65% of PFAS intake and was dominated by neutral PFAS because fluorotelomer alcohol (FTOH) concentrations in air were several orders of magnitude greater than ionic PFAS concentrations. Perfluorooctanoic acid (PFOA) intake was 6.1 × 10<sup>-2</sup> ng kg<sup>-1</sup> per day (adults) and 1.5 × 10<sup>-1</sup> ng kg<sup>-1</sup> per day (2 year-old), and biotransformation of 8 : 2 FTOH to PFOA increased this PFOA body burden by 14% (adults) and 17% (2 year-old), suggesting inhalation may also be a meaningful contributor to ionic PFAS exposure through biotransformation.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic multilayer models for surface chemistry in indoor environments.","authors":"Pascale S J Lakey, Manabu Shiraiwa","doi":"10.1039/d4em00549j","DOIUrl":"10.1039/d4em00549j","url":null,"abstract":"<p><p>Multiphase interactions and chemical reactions at indoor surfaces are of particular importance due to their impact on air quality in indoor environments with high surface to volume ratios. Kinetic multilayer models are a powerful tool to simulate various gas-surface interactions including partitioning, diffusion and multiphase chemistry of indoor compounds by treating mass transport and chemical reactions in a number of model layers in the gas and condensed phases with a flux-based approach. We have developed a series of kinetic multilayer models that have been applied to describe multiphase chemistry and interactions indoors. They include the K2-SURF model treating the reversible adsorption of volatile organic compounds on surfaces, the KM-BL model treating diffusion through an indoor surface boundary layer, the KM-FILM model treating organic film formation by multi-layer adsorption and film growth by absorption of indoor compounds, and the KM-SUB-Skin-Clothing model treating reactions of ozone with skin lipids in skin and clothing. We also developed the effective mass accommodation coefficient that can treat surface partitioning by effectively taking into account kinetic limitations of bulk diffusion. In this study we provide detailed instructions and code annotations of these models for the model user. Example sensitivity simulations that investigate the impact of input parameters are presented to help with familiarization to the codes. The user can adapt the codes as required to model experimental and indoor field campaign measurements, can use the codes to gain insights into important reactions and processes, and can extrapolate to new conditions that may not be accessible by measurements.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata
{"title":"Domestic groundwater wells in Appalachia show evidence of low-dose, complex mixtures of legacy pollutants†","authors":"Nicolette A. Bugher, Boya Xiong, Runako I. Gentles, Lukas D. Glist, Helen G. Siegel, Nicholaus P. Johnson, Cassandra J. Clark, Nicole C. Deziel, James E. Saiers and Desiree L. Plata","doi":"10.1039/D4EM00364K","DOIUrl":"10.1039/D4EM00364K","url":null,"abstract":"<p >Lack of water quality data for private drinking water sources prevents robust evaluation of exposure risk for communities co-located with historically contaminated sites and ongoing industrial activity. Areas of the Appalachian region of the United States (<em>i.e.</em>, Pennsylvania, Ohio and West Virginia) contain extensive hydraulic fracturing activity, as well as other extractive and industrial technologies, in close proximity to communities reliant on private drinking water sources, creating concern over potential groundwater contamination. In this study, we characterized volatile organic compound (VOC) occurrence at 307 private groundwater well sites within Pennsylvania, Ohio, and West Virginia. The majority (97%) of water samples contained at least one VOC, while the average number of VOCs detected at a given site was 5 ± 3. The majority of individual VOC concentrations fell below applicable U.S. Environmental Protection Agency (EPA) Maximum Contamination Levels (MCLs), except for chloroform (MCL of 80 μg L<small><sup>−1</sup></small>; <em>n</em> = 1 at 98 μg L<small><sup>−1</sup></small>), 1,2-dibromoethane (MCL of 0.05 μg L<small><sup>−1</sup></small>; <em>n</em> = 3 ranging from 0.05 to 0.35 μg L<small><sup>−1</sup></small>), and 1,2-dibromo-3-chloropropane (MCL of 0.2 μg L<small><sup>−1</sup></small>; <em>n</em> = 7 ranging from 0.20 to 0.58 μg L<small><sup>−1</sup></small>). To evaluate well susceptibility to VOCs from industrial activity, distance to hydraulic fracturing site was used to assess correlations with contaminant occurrences. Proximity to closest hydraulic fracturing well-site revealed no statistically significant linear relationships with either individual VOC concentrations, or frequency of VOC detections. Evaluation of other known industrial contamination sites (<em>e.g.</em>, US EPA Superfund sites) revealed elevated levels of three VOCs (chloroform, toluene, benzene) in groundwaters within 10 km of those Superfund sites in West Virginia and Ohio, illuminating possible point source influence. Lack of correlation between VOC concentrations and proximity to specific point sources indicates complex geochemical processes governing trace VOC contamination of private drinking water sources. While individual concentrations of VOCs fell well below recommended human health levels, the low dose exposure to multiple VOCs occurring in drinking supplies for Appalachian communities was noted, highlighting the importance of groundwater well monitoring.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2250-2263"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00364k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw
{"title":"Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London†","authors":"Samuel Wilson, Naomi J. Farren, Shona E. Wilde, Rebecca L. Wagner, James D. Lee, Lauren E. Padilla, Greg Slater, Daniel Peters and David. C. Carslaw","doi":"10.1039/D4EM00552J","DOIUrl":"10.1039/D4EM00552J","url":null,"abstract":"<p >This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO<small><sub>2</sub></small> = NO<small><sub><em>x</em></sub></small>), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM<small><sub>2.5</sub></small>) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM<small><sub>2.5</sub></small> emissions, even in the highly dieselized area of Central London. However, mobile monitoring also reveals infrequent elevated PM<small><sub>2.5</sub></small> concentrations caused by malfunctioning vehicles. These events were confirmed through simultaneous measurements of PM<small><sub>2.5</sub></small> and sulfur dioxide (SO<small><sub>2</sub></small>), the latter being a strong tracer of engine lubricant combustion. A single event from a gasoline car, representing just 0.15% of the driving distance in Outer London, was responsible for 7.4% of the ΔPM<small><sub>2.5</sub></small> concentration above background levels, highlighting the ongoing importance of addressing high-emission vehicles. In a novel application of mobile monitoring, we demonstrate the ability to identify and quantify non-vehicular sources of PM. Among the sources unambiguously identified are construction activities, which result in elevated concentrations of coarse particulate matter (PM<small><sub>coarse</sub></small> = PM<small><sub>10</sub></small> − PM<small><sub>2.5</sub></small>). The mobile measurements clearly highlight the spatial extent of the influence of such sources, which would otherwise be difficult to determine. Furthermore, these sources are shown to be weather-dependent, with PM<small><sub>coarse</sub></small> concentrations reduced by 62.1% during wet conditions compared to dry ones.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2145-2157"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00552j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin
{"title":"Validation of a laboratory spray generation system and its use in a comparative study of hexamethylene diisocyanate (HDI) evaluation methods†","authors":"Hugues Ahientio, Loïc Wingert, Sébastien Gagné, Livain Breau, Jacques Lesage and Simon Aubin","doi":"10.1039/D4EM00513A","DOIUrl":"10.1039/D4EM00513A","url":null,"abstract":"<p >Isocyanates are well-known irritants and sensitizers, and measuring their occupational airborne exposure is challenging due to their high chemical reactivity and semi-volatile nature. This study builds on a previous publication by our team that focused on comparing evaluation methods for isocyanates. The current research aims at developing, validating, and applying a laboratory generation system designed to replicate real-world conditions for spraying clear coats in autobody shops using hexamethylene diisocyanate (HDI)-based products. The system involved a spray gun connected to two chambers in series, enabling sample collection and analysis. The system successfully generated HDI and isocyanurate concentrations ranging from 0.008 to 0.040 mg m<small><sup>−3</sup></small> and 0.351 to 3.45 mg m<small><sup>−3</sup></small>, respectively, with spatial homogeneity (RSD) of 5.8% and 16.5%. The particle-size distribution (MMAD) of 4 μm was measured using a cascade impactor and an electrical low-pressure impactor. The samples generated were used to correlate the amount of isocyanates collected with scanning electron microscope images of droplets on a filter. Three methods were compared to the reference method—an impinger with a backup glass fibre filter (GFF) and 1,2-methoxyphenylpiperazine (MP) based on ISO 16702/MDHS 25—in six generation experiments: (1) Swinnex cassette 13 mm GFF MP (MP-Swin); (2) closed-face cassette 37 mm GFF (end filter and inner walls) MP (MP-37); and (3) denuder and GFF dibutylamine (DBA) (ISO 17334-1 Asset). The analysis revealed clear trends regarding which sampler sections collected HDI (mainly in the vapor phase) or isocyanurate (exclusively in the particulate phase). The study found no significant bias between the tested methods (MP-Swin, MP-37, and Asset) and the reference method (impinger) for both HDI monomer and isocyanurate. The three tested methods showed limits of agreement beyond the acceptable range of ±30% (95% confidence interval), largely due to data variability, though MP-Swin and MP-37 exhibited lower variability than Asset. The results will be further evaluated in a real-world environment where similar clear coats are used.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 1","pages":" 119-132"},"PeriodicalIF":4.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiva Nourani, Ana María Villalobos and Héctor Jorquera
{"title":"A methodology for estimating indoor sources contributing to PM2.5†","authors":"Shiva Nourani, Ana María Villalobos and Héctor Jorquera","doi":"10.1039/D4EM00538D","DOIUrl":"10.1039/D4EM00538D","url":null,"abstract":"<p >Quantifying source contributions to indoor PM<small><sub>2.5</sub></small> levels by indoor PM<small><sub>2.5</sub></small> sources has been limited by the costs associated with chemical speciation analyses of indoor PM<small><sub>2.5</sub></small> samples. Here, we propose a new methodology to estimate this contribution. We applied FUzzy SpatioTemporal Apportionment (FUSTA) to a database of indoor and outdoor PM<small><sub>2.5</sub></small> concentrations in school classrooms plus surface meteorological data to determine the main spatiotemporal patterns (STPs) of PM<small><sub>2.5</sub></small>. We found four dominant STPs in outdoor PM<small><sub>2.5</sub></small>, and we denoted them as regional, overnight mix, traffic, and secondary PM<small><sub>2.5</sub></small>. For indoor PM<small><sub>2.5,</sub></small> we found the same four outdoor STPs plus another STP with a distinctive temporal evolution characteristic of indoor-generated PM<small><sub>2.5</sub></small>. Concentration peaks were evident for this indoor STP due to children's activities and classroom housekeeping, and there were minimum contributions on sundays when schools were closed. The average indoor-generated estimated contribution to PM<small><sub>2.5</sub></small> was 5.7 μg m<small><sup>−3</sup></small>, which contributed to 17% of the total PM<small><sub>2.5</sub></small>, and if we consider only school hours, the respective figures are 8.1 μg m<small><sup>−3</sup></small> and 22%. A cluster-wise indoor–outdoor PM<small><sub>2.5</sub></small> regression was applied to estimate STP-specific infiltration factors (<em>F</em><small><sub>inf</sub></small>) per school. The median and interquartile range (IQR) values for <em>F</em><small><sub>inf</sub></small> are 0.83 [0.7–0.89], 0.76 [0.68–0.84], 0.72 [0.64–0.81], and 0.7 [0.62–0.9], for overnight mix, secondary, traffic, and regional sources, respectively. This cost-effective methodology can identify the indoor-generated contributions to indoor PM<small><sub>2.5</sub></small>, including their temporal variability.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2288-2296"},"PeriodicalIF":4.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00538d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}