Langmuir最新文献

筛选
英文 中文
Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04687
Bangbang Nie, Yihong Zhu, Zongxu Luo, Jingjiang Qiu, Mingfu Zhu, Ming Zhai, Guobi Chai, Xiangming Li, Jinyou Shao, Ronghan Wei
{"title":"Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control","authors":"Bangbang Nie, Yihong Zhu, Zongxu Luo, Jingjiang Qiu, Mingfu Zhu, Ming Zhai, Guobi Chai, Xiangming Li, Jinyou Shao, Ronghan Wei","doi":"10.1021/acs.langmuir.4c04687","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04687","url":null,"abstract":"The rapid development of wearable technology, flexible electronics, and human–machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex). This sensor adopted an immersion coating process in which MWCNTs were conformally deposited on SPF, and Ecoflex was filled into the fiber interstices, completing the encapsulation and filling of the SPF to construct a stable three-dimensional conductive network. Thanks to the filling of Ecoflex, contact between conductive fibers during the stretching process was avoided, resulting in a significant change in the resistance. The sensitivity of the sensor reached 54.84, which is 10 times higher than before the Ecoflex filling with a stretchable strain range of up to 70%. The encapsulation of Ecoflex also prevented the detachment of MWCNTs on the fibers during stretching, improving the mechanical stability. The sensor can be easily attached to the surface of human skin to rapidly monitor various human motion signals. Furthermore, the sensor was related to the manipulator through wireless Bluetooth to realize the intelligent control of the manipulator. This work not only provided a more precise data monitoring method for medical and motion analysis fields but also offered an innovative solution for manipulator control.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"47 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binding Kinetics of Self-Assembled Monolayers of Fluorinated Phosphate Ester on Metal Oxides for Underwater Aerophilicity
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04320
Anca Mazare, Mahmut Hakan Ulubas, Hyesung Kim, Iana Fomicheva, George Sarau, Silke H. Christiansen, Wolfgang H. Goldmann, Alexander B. Tesler
{"title":"Binding Kinetics of Self-Assembled Monolayers of Fluorinated Phosphate Ester on Metal Oxides for Underwater Aerophilicity","authors":"Anca Mazare, Mahmut Hakan Ulubas, Hyesung Kim, Iana Fomicheva, George Sarau, Silke H. Christiansen, Wolfgang H. Goldmann, Alexander B. Tesler","doi":"10.1021/acs.langmuir.4c04320","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04320","url":null,"abstract":"The term “aerophilic surface” is used to describe superhydrophobic surfaces in the Cassie–Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge. This study demonstrates that fluorinated phosphate ester, with a surface tension as low as 15.31 mN m<sup>–1</sup>, can form a self-assembled monolayer on metal oxide substrates within seconds using a facile wet-chemical approach. X-ray photoelectron spectroscopy was used to analyze the formed self-assembled monolayers. Using nanotubular morphology as a rough substrate, we demonstrate the rapid formation of a superhydrophobic surface with a trapped air layer underwater.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"118 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Square Lattice of Colloidal Particles Formed by Electrostatic Adsorption in Confined Space
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04480
Yurina Aoyama, Akiko Toyotama, Tohru Okuzono, Tatsuya Ishikawa, Koichiro Hyodo, Masaya Nishida, Junpei Yamanaka
{"title":"Two-Dimensional Square Lattice of Colloidal Particles Formed by Electrostatic Adsorption in Confined Space","authors":"Yurina Aoyama, Akiko Toyotama, Tohru Okuzono, Tatsuya Ishikawa, Koichiro Hyodo, Masaya Nishida, Junpei Yamanaka","doi":"10.1021/acs.langmuir.4c04480","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04480","url":null,"abstract":"In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption. This work presents the synthesis of 2D crystals with square lattices─a configuration widely used in photonics. We prepared 3D colloidal crystals of silica particles with four-fold symmetry in a micrometer-scale gap between two coverslips. The bottom glass surface is modified with a cationic silane coupling reagent, aminopropyltriethoxysilane, generating pH-responsive charge characteristics with an isoelectric point (iep) near pH 8. When the pH is greater than iep, the surface is charged negatively. As pH decreases below iep, the sign of the surface charge reverses to positive. Controlled pH lowering below the iep induces adsorption of the lowermost lattice plane of 3D crystals onto the substrate, yielding 2D crystals with a distinct square lattice. We further synthesized three-layer body-centered cubic (BCC) structures by stacking alternating layers of the 2D square lattices of silica and polystyrene particles. By aligning the refractive index of the surrounding medium (aqueous solution of ethylene glycol) with that of silica particles, we successfully fabricated a structure that is optically identical to a simple cubic lattice. These findings advance the development of 2D crystalline materials for photonic and plasmonic applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"24 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04572
Yunhao Bai, Jipeng Zhang, Yixu Wang, Xiangye Guo, Junwen Deng, Xuanshu Zhong, Wendi Xie, Jinsheng Xiao, Huiliang Wang
{"title":"Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens","authors":"Yunhao Bai, Jipeng Zhang, Yixu Wang, Xiangye Guo, Junwen Deng, Xuanshu Zhong, Wendi Xie, Jinsheng Xiao, Huiliang Wang","doi":"10.1021/acs.langmuir.4c04572","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04572","url":null,"abstract":"Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.e., polymaleic acid (PMA), arginine (Arg), and polyacrylamide (PAM), and investigated its photoluminescent behavior and mechanism. Compared with the single components and binary components, the PMA/Arg/PAM solid exhibited two red-shifted emission peaks at 510 and 562 nm and higher quantum yields. Structural characterizations demonstrated that hydrogen bonds formed between the nonconventional chromophores in PMA and Arg lead to more extended through-space conjugation and rigidified conformations, which is the fundamental reason for the red-shifted emission and higher quantum yield of the PMA/Arg/PAM solid. In addition, theoretical calculations proved that excited-state proton transfer occurs between the carboxyl groups of PMA and amino groups of Arg via photoexcitation, resulting in dual emissions in the PMA/Arg/PAM solid. This work provides a deeper understanding of the photoluminescence mechanism of NTLs based on multiple hydrogen bonds and is helpful in guiding the design of NTLs with red-shifted and enhanced emissions.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"8 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular Gelation Based on Native Amino Acid Tyrosine and Its Charge-Transfer Complex Formation
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c03708
Pijush Singh, Manju Siyaram Yadav, Soumen Kuila, Amit Kumar Paul, Debes Ray, Souvik Misra, Jishu Naskar, Vinod Kumar Aswal, Jayanta Nanda
{"title":"Supramolecular Gelation Based on Native Amino Acid Tyrosine and Its Charge-Transfer Complex Formation","authors":"Pijush Singh, Manju Siyaram Yadav, Soumen Kuila, Amit Kumar Paul, Debes Ray, Souvik Misra, Jishu Naskar, Vinod Kumar Aswal, Jayanta Nanda","doi":"10.1021/acs.langmuir.4c03708","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03708","url":null,"abstract":"Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature. In this article, we are first-time reporting the self-assembly process of tyrosine (Tyr), an aromatic amino acid, in dimethyl sulfoxide (DMSO) solvent. Most of the studies related to Tyr self-assembly were reported in different aqueous solutions. In our work, we studied the self-assembly in several common organic solvents and found that Tyr could self-assemble into a supramolecular gel in dimethyl sulfoxide (DMSO) solvent. The self-assembly process was investigated by several techniques, such as UV–vis, fluorescence, FTIR, and NMR spectroscopy. Morphological features on the nanoscale were investigated through scanning electron microscopy (SEM). SEM images indicated the formation of nanofibrils with high aspect ratios. The supramolecular gel property was investigated by different rheological experiments. Computational study on the self-assembly process of Tyr in DMSO medium suggested that noncovalent interactions like hydrogen bonding and π–π stacking among the Tyr molecules played a prominent role. Finally, the charge-transfer complex formation ability of electron-rich Tyr with electron-deficient 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was studied. In the presence of DDQ due to the charge-transfer complex formation, the supramolecular gel converted into a reddish color solution, and their fibrillar nanoscale morphologies collapsed.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biphasic Coacervation Controlled by Kinetics as Studied by De Novo-Designed Peptides
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04114
Tianhao Ren, Dehai Liang
{"title":"Biphasic Coacervation Controlled by Kinetics as Studied by De Novo-Designed Peptides","authors":"Tianhao Ren, Dehai Liang","doi":"10.1021/acs.langmuir.4c04114","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04114","url":null,"abstract":"Coacervation is generally treated as a liquid–liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)<sub>6</sub>SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values. Only in the case where the charge density is constant and the electrostatic interaction is the major driving force for Coacervation is the effect of kinetics negligible. When pH-dependent electrostatic interaction and hydrophobic interaction are involved or the peptides form secondary structures, the Coacervation process is then path-dependent, indicating that the kinetics controls the phase separation process. The Coacervation by combining two different peptides suggests that the peptide with a higher charge density plays a leading role in the early stage, while the cooperation of both peptides takes over afterward. Our work demonstrates that it is normal to observe coacervates with different morphologies and functions due to kinetic control, especially in living cells. Peptides with minimized sequences are a practical approach to reveal the mechanism of Coacervation processes controlled by kinetics.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"26 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defending Ti6Al4V against Biofilm Formation with Albumin Biofunctionalization
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-15 DOI: 10.1021/acs.langmuir.4c04867
Ma. Laura Martí, Viviana Cano Aristizábal, Rubén Motrich, Laura E. Valenti, Carla E. Giacomelli
{"title":"Defending Ti6Al4V against Biofilm Formation with Albumin Biofunctionalization","authors":"Ma. Laura Martí, Viviana Cano Aristizábal, Rubén Motrich, Laura E. Valenti, Carla E. Giacomelli","doi":"10.1021/acs.langmuir.4c04867","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04867","url":null,"abstract":"Surface biofunctionalization with structurally perturbed albumin, as well as with other plasmatic proteins, inhibits the initial bacterial adhesion and biofilm formation, involved in numerous healthcare-associated infections. In fact, we have reported this protective effect with thermally treated plasmatic proteins, such as albumin and fibrinogen, adsorbed on flat silica surfaces. Here, we show that albumin biofunctionalization also works properly on flat Ti6Al4V substrates, which are widely used to fabricate medical devices. The protective effect is conserved even in biologically relevant fluids, containing other proteins that potentially adsorb onto and/or displace preadsorbed albumin from the biofunctionalized substrates. We further demonstrate that the presence of structurally perturbed albumin on the substrate does not trigger macrophage activation and the release of inflammatory mediators. Consequently, surface biofunctionalization with thermally perturbed albumin is a simple strategy to prepare antibacterial, nonimmunogenic medical devices.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"18 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slip Flow in Hydrophilic Nanopores of Silica Colloidal Crystals
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-14 DOI: 10.1021/acs.langmuir.4c04369
Pranay Asai, Taylor Jordan, Viktoriya Semeykina, Thang Tran, Darryl Butt, Milind Deo, Ilya Zharov
{"title":"Slip Flow in Hydrophilic Nanopores of Silica Colloidal Crystals","authors":"Pranay Asai, Taylor Jordan, Viktoriya Semeykina, Thang Tran, Darryl Butt, Milind Deo, Ilya Zharov","doi":"10.1021/acs.langmuir.4c04369","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04369","url":null,"abstract":"Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm. The spheres were pressure-packed in a fused silica capillary with an inner diameter of 75 μm. The resulting colloidal crystals had an average pore radius of 18 ± 4, 66 ± 6, and 215 ± 14 nm for the three silica sphere sizes used. The colloidal crystals were demonstrated to possess almost perfect packing. The fluids were flown through the colloidal crystals, and the pressure drop was measured using a pressure transducer. The flow rates varied from 10 to 80 nL/min. Water showed no-slip Hagen–Poiseuille flow with no enhancement for all of the pore sizes. Hexane showed a 20-fold flow enhancement for the smallest pore size, and the enhancement diminished for the medium pore size and was absent for the largest pore size. Methanol also showed a 20-fold flow enhancement for the smallest pores, about a 15-fold enhancement for the medium pores, and no enhancement for the largest pore size. The reduction in flow enhancement was significantly steeper for hexane than for methanol with an increasing pore size. These results demonstrate a significant slip flow in small (15 nm) hydrophilic nanopores for non-wetting fluids, which is size- and fluid-property-dependent. These observations are important for understanding fluid dynamics in liquid chromatography and naturally occurring nanoporous media.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"12 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of Cu2MoS4/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-14 DOI: 10.1021/acs.langmuir.4c04325
Yanli Zhuang, Hao Cheng, Shuo Tian, Yancheng Hao, Jikun Pan, Zihuan Zhang, Dan Li, Limin Dong, Jian Li, You Li, Xinxin Jin
{"title":"Construction of Cu2MoS4/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production","authors":"Yanli Zhuang, Hao Cheng, Shuo Tian, Yancheng Hao, Jikun Pan, Zihuan Zhang, Dan Li, Limin Dong, Jian Li, You Li, Xinxin Jin","doi":"10.1021/acs.langmuir.4c04325","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04325","url":null,"abstract":"Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of Cu<sub>2</sub>MoS<sub>4</sub> nanosheets. The photocatalytic H<sub>2</sub> precipitation rate is about 545 μmol·g<sup>–1</sup>·h<sup>–1</sup>, which is 6.8 times that of Cu<sub>2</sub>MoS<sub>4</sub> and 3 times that of ZnO without any cocatalyst. After etching modification of CMS, the photocatalytic hydrogen production efficiency of the ECMS/ZnO heterojunction is further improved. Its hydrogen production efficiency reaches about 1115 μmol·g<sup>–1</sup>·h<sup>–1</sup>, which is 9 times that of ECMS and 6 times that of ZnO. The reasons are mainly attributed to the following two factors: (1) the formation of the ECMS/ZnO type-II-type heterojunction facilitates the effective separation of photogenerated electrons and holes; (2) the band structure of Cu<sub>2</sub>MoS<sub>4</sub> was optimized by etching modification, which made the ECMS/ZnO heterojunction have lower interfacial charge transfer resistance and improved the photocatalytic hydrogen production activity of the heterojunction.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"77 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking Cholesterol Flip-Flop in Mammalian Plasma Membrane through Coarse-Grained Molecular Dynamics Simulations
IF 3.9 2区 化学
Langmuir Pub Date : 2025-01-14 DOI: 10.1021/acs.langmuir.4c03717
Ayishwarya Dutta, Monika Kumari, Hemant K. Kashyap
{"title":"Tracking Cholesterol Flip-Flop in Mammalian Plasma Membrane through Coarse-Grained Molecular Dynamics Simulations","authors":"Ayishwarya Dutta, Monika Kumari, Hemant K. Kashyap","doi":"10.1021/acs.langmuir.4c03717","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03717","url":null,"abstract":"Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event. We identify two discrete cholesterol flip-flop pathways: (i) a systematic rototranslational pathway and (ii) intraleaflet inversion followed by interleaflet translation (or reverse). We observe a periodic cholesterol enrichment in the exoplasmic leaflet of the PM bilayer and examine the underlying cholesterol–lipid affinities. We observe closer association between cholesterol and palmitoylsphingomyelin (PSM) lipid, relative to other lipids, and conclude that the cholesterol enrichment in the exoplasmic leaflet can be attributed to higher PSM content in that leaflet, together leading to formation of short-lived PSM–cholesterol-rich domains.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"49 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信