Metallomics最新文献

筛选
英文 中文
Zinc-mediated dynamics of CD4/CD8α co-receptors and Lck kinase: Implications for zinc homeostasis, immune response, and biotechnological innovations. 锌介导的CD4/CD8α共受体和Lck激酶动力学:锌稳态、免疫反应和生物技术创新的意义
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-06-12 DOI: 10.1093/mtomcs/mfaf018
Anna Kocyła, Artur Krężel
{"title":"Zinc-mediated dynamics of CD4/CD8α co-receptors and Lck kinase: Implications for zinc homeostasis, immune response, and biotechnological innovations.","authors":"Anna Kocyła, Artur Krężel","doi":"10.1093/mtomcs/mfaf018","DOIUrl":"https://doi.org/10.1093/mtomcs/mfaf018","url":null,"abstract":"<p><p>Zinc (Zn²⁺) plays a pivotal role in T-cell activation by modulating the interactions between the co-receptors CD4 and CD8α and the Src-family kinase Lck. A central structural feature in this regulation is the zinc clasp, a Zn²⁺-mediated CD4/CD8α-Lck receptor interface that stabilizes these complexes during T cell receptor (TCR) signaling. Recent findings reveal that the stability of CD4-Lck and CD8α-Lck complexes is differentially regulated by Zn²⁺, which acts as a dynamic signaling molecule during T-cell activation. Here, we discuss the structural dynamics of these interactions and the impact of Zn²⁺ on CD4 dimerization, palmitoylation, and membrane interactions, which are crucial for effective T-cell responses. These mechanisms underscore a broader framework in which zinc biology intersects with co-receptor-Lck coupling to guide T-cell development, lineage fidelity, and functional specialization. Beyond immunobiology, zinc-dependent protein-protein interactions offer promising opportunities for biotechnological innovation, particularly in the design of molecular systems that exploit zinc-mediated structural control.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selenoneine scavenges hydroxyl radicals by self-oxidation in hydrogen peroxide and by forming seleninic acid, which is reduced back to selenoneine. 硒氨酸通过在过氧化氢中自氧化和形成硒酸来清除羟基自由基,硒酸被还原回硒氨酸。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-06-04 DOI: 10.1093/mtomcs/mfaf016
Takuya Seko, Hajime Uchida, Shintaro Imamura, Kenji Ishihara, Yumiko Yamashita, Michiaki Yamashita
{"title":"Selenoneine scavenges hydroxyl radicals by self-oxidation in hydrogen peroxide and by forming seleninic acid, which is reduced back to selenoneine.","authors":"Takuya Seko, Hajime Uchida, Shintaro Imamura, Kenji Ishihara, Yumiko Yamashita, Michiaki Yamashita","doi":"10.1093/mtomcs/mfaf016","DOIUrl":"https://doi.org/10.1093/mtomcs/mfaf016","url":null,"abstract":"<p><p>Selenoneine (SEN), a selenium analog of ergothioneine (EGT), is widely distributed in marine fishes and is a strong radical scavenger. Electron spin resonance (ESR) spectrometry showed that SEN monomer and dimer directly scavenged ·OH generated by irradiating hydrogen peroxide (H2O2) with ultraviolet light. The radical scavenging capacity was stronger for SEN monomer, dimer and EGT in that order. Mass spectrometry analyses revealed that the monomer and dimer were oxidized to SEN seleninic acid (SEN-seleninic acid) in the presence of H2O2, and that SEN-seleninic acid was reduced to SEN monomer by reduced glutathione (GSH). These reactions proceeded at physiological concentrations of H2O2 and GSH. Our findings suggest that SEN scavenges ·OH directly by a rapid, repetitive non-enzymatic reaction via self-oxidation and by its reduction back to SEN.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144223776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic intra-renal changes in cadmium distribution detected by LA-ICP-MS in mice administered cadmium-metallothionein. 用LA-ICP-MS检测镉金属硫蛋白给药小鼠肾内镉分布的动态变化。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-06-04 DOI: 10.1093/mtomcs/mfaf017
Hitomi Fujishiro, Kanako Matsumoto, Hitomi Umemoto, Koichi Tsuneyama, Takehisa Matsukawa, Ayano Kubota, Seiichiro Himeno, Daigo Sumi
{"title":"Dynamic intra-renal changes in cadmium distribution detected by LA-ICP-MS in mice administered cadmium-metallothionein.","authors":"Hitomi Fujishiro, Kanako Matsumoto, Hitomi Umemoto, Koichi Tsuneyama, Takehisa Matsukawa, Ayano Kubota, Seiichiro Himeno, Daigo Sumi","doi":"10.1093/mtomcs/mfaf017","DOIUrl":"https://doi.org/10.1093/mtomcs/mfaf017","url":null,"abstract":"<p><p>Administration of cadmium-metallothionein (Cd-MT) complex has been known to cause acute nephrotoxicity due to free Cd ions during the breakdown of the Cd-MT protein in renal cells. However, the fate of the renal Cd after Cd-MT administration remains elusive. We applied LA-ICP-MS to visualize Cd distribution in the kidneys of mice administered Cd-MT. In the initial several hours, Cd was detected predominantly in the renal cortex. Elevated urinary β2-microglobulin and glucose within a day and rapid induction of MT-I mRNA indicated the generation of toxic free Cd ions. Unexpectedly, however, the Cd distribution changed drastically: from the cortex to the boundary of the cortex and outer medulla until three days. From 3 to 18 h, renal Cd concentrations decreased rapidly, accompanied by a large amount of urinary Cd excretion. These results suggest that the injected Cd-MT was transiently distributed in the surface nephrons in the cortex, and the free Cd ions derived from the decomposed Cd-MT were released into the lumen of proximal tubules and then partly reabsorbed at the boundary of the cortex and outer medulla, where the S3-segment proximal tubules exist abundantly. Thus, the LA-ICP-MS revealed dynamic changes in Cd distribution, suggesting the intra-renal transport of the Cd-MT-derived free Cd ions in the kidneys.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144223775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conserved aspartate residue in [4Fe-4S]-containing HypD is required for [NiFe]-cofactor biosynthesis and for efficient interaction of the HypCD scaffold complex with HypE. [4Fe-4S]-含HypD中一个保守的天冬氨酸残基是[NiFe]-辅因子生物合成和HypCD支架复合物与HypE有效相互作用所必需的。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-06-03 DOI: 10.1093/mtomcs/mfaf014
Alexander Haase, Christian Arlt, Maximilian Hardelt, Andrea Sinz, R Gary Sawers
{"title":"A conserved aspartate residue in [4Fe-4S]-containing HypD is required for [NiFe]-cofactor biosynthesis and for efficient interaction of the HypCD scaffold complex with HypE.","authors":"Alexander Haase, Christian Arlt, Maximilian Hardelt, Andrea Sinz, R Gary Sawers","doi":"10.1093/mtomcs/mfaf014","DOIUrl":"10.1093/mtomcs/mfaf014","url":null,"abstract":"<p><p>Six Hyp (A through F) proteins synthesize the NiFe(CN)2CO cofactor found in all [NiFe]-hydrogenases. The Fe(CN)2CO moiety of this cofactor is assembled on a separate scaffold complex comprising HypC and HypD. HypE and HypF generate the cyanide ligands from carbamoyl phosphate by converting the carbamoyl moiety to a thiocyanate associated with HypE's C-terminal cysteine residue, within a conserved 'PRIC' motif. Here, we identify amino acid residue D98 in the central cleft of HypD to be required for biosynthesis of the Fe(CN)2CO moiety and for optimal interaction of HypD with HypE. Construction of a D98A amino acid variant of HypD caused near-complete loss of hydrogenase activity in anaerobically grown Escherichia coli cells, while exchange of the structurally proximal, but non-conserved, residue S356 on HypD, did not. Native mass spectrometric analysis of the anaerobically purified HypC-HypDD98A scaffold complex revealed only a low amount of the bound Fe(CN)2CO group. Western blotting experiments revealed that purified scaffold complexes between either HypC or HybG (a paralogue of HypC) with HypD-D98A showed a strongly impaired interaction with HypE. Examination of the HypCDE complex crystal structure from Thermococcus kodakarensis revealed that D98 of HypD lies within a cleft through which the C-terminus of HypE can access the bound iron ion on HypCD. Alphafold3 predictions suggest that the D98 residue interacts with the arginine residue of the 'PRIC' motif at the C-terminus of HypE to position the modified terminal cysteine residue precisely for delivery of cyanide to the iron ion associated with the HypCD complex.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144135916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis and assembly of hydrogenase [NiFe]-cofactor: recent advances and perspectives. 氢化酶[NiFe]-辅因子的生物合成与组装:最新进展与展望
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-06-03 DOI: 10.1093/mtomcs/mfaf015
R Gary Sawers, Maximilian Hardelt, Alexander Haase, Dorothea Lubek
{"title":"Biosynthesis and assembly of hydrogenase [NiFe]-cofactor: recent advances and perspectives.","authors":"R Gary Sawers, Maximilian Hardelt, Alexander Haase, Dorothea Lubek","doi":"10.1093/mtomcs/mfaf015","DOIUrl":"10.1093/mtomcs/mfaf015","url":null,"abstract":"<p><p>The large subunit of all [NiFe]-hydrogenases in bacteria and archaea has a heterobimetallic NiFe(CN)2CO cofactor coordinated by four cysteine residues. The iron ion has two cyanides and a carbon monoxide as diatomic ligands. Six ancillary Hyp (ABCDEF) proteins are necessary for anaerobic synthesis of this cofactor, while under oxic conditions at least one further protein, HypX, is required for CO synthesis. The Fe(CN)2CO moiety of the cofactor is synthesized on a separate HypCD scaffold complex. Nickel is inserted into the apo-large subunit only after Fe(CN)2CO has been introduced. Recent biochemical and structural studies have significantly advanced our understanding of cofactor biosynthesis for these important metalloenzymes. Despite these gains in mechanistic insight, many questions still remain, the most pressing of which is the origin of the CO ligand in anaerobic microorganisms. This minireview provides an overview of the current status of this research field and highlights recent advances and unresolved issues.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144135921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-sensitive δ65Cu isotopic fractionation in the tissue of the scleractinian coral Stylophora pistillata: a biomarker of holobiont photophysiology following volcanic ash exposure. 硬核珊瑚柱头(Stylophora pistilllata)组织中氧化还原敏感的δ65Cu同位素分馏:火山灰暴露后全生物光生理的生物标志物。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-05-05 DOI: 10.1093/mtomcs/mfaf011
Frank Förster, Lucie Sauzéat, Christine Ferrier-Pagès, Stéphanie Reynaud, Tom E Sheldrake
{"title":"Redox-sensitive δ65Cu isotopic fractionation in the tissue of the scleractinian coral Stylophora pistillata: a biomarker of holobiont photophysiology following volcanic ash exposure.","authors":"Frank Förster, Lucie Sauzéat, Christine Ferrier-Pagès, Stéphanie Reynaud, Tom E Sheldrake","doi":"10.1093/mtomcs/mfaf011","DOIUrl":"https://doi.org/10.1093/mtomcs/mfaf011","url":null,"abstract":"<p><p>Volcanic ash is a significant source of micronutrients including iron (Fe), copper (Cu), and zinc (Zn) in oligotrophic tropical waters. These bioactive metals enhance primary productivity, influencing local and global biogeochemical cycles. This study explores how volcanic ash exposure affects trace metal uptake and photophysiological response, and how redox-sensitive metal stable isotope measurements in the tissues of the scleractinian coral Stylophora pistillata can provide crucial information on coral health. Controlled coral culture experiments were conducted in which coral nubbins were exposed to varying intensity and duration of volcanic ash. Throughout the experiment, coral symbionts showed enhanced photosynthetic performance irrespective of intensity or duration of ash exposure. Stable isotopes, such as δ65Cu and δ56Fe, in the coral tissue are marked by systematic variations, not associated with intensity or duration of ash exposure. Instead, we suggest biologically modulated redox-sensitive fractionation associated with ash exposure, linked to the coral host's oxidative stress state. This is evidenced by significant correlations between δ65Cu in coral hosts and photophysiology, with lighter Cu isotope ratios associated with higher photosynthetic performances. Hence, we propose that δ65Cu, and more generally redox-sensitive isotopic ratios (i.e. δ56Fe), in coral hosts serves as an indicator of the physiological state of symbiotic corals.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"17 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, DNA interaction studies, and biological evaluation of copper(II) hybrids containing azole drugs and intercalating ligands against neglected diseases. 含唑类药物和嵌入配体的铜(II)杂合体抗被忽视疾病的合成、表征、DNA相互作用研究和生物学评价。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-05-05 DOI: 10.1093/mtomcs/mfaf012
José Aleixo de Azevedo-França, Victor Feliciano Dos Santos Ramos, Patrícia Salvador Tessaro, Heveline Silva, Luigi Messori, Fabio Santanni, Lorenzo Sorace, Luana Pereira Borba-Santos, Sonia Rozental, Juliany Cola Fernandes Rodrigues, Maribel Navarro
{"title":"Synthesis, characterization, DNA interaction studies, and biological evaluation of copper(II) hybrids containing azole drugs and intercalating ligands against neglected diseases.","authors":"José Aleixo de Azevedo-França, Victor Feliciano Dos Santos Ramos, Patrícia Salvador Tessaro, Heveline Silva, Luigi Messori, Fabio Santanni, Lorenzo Sorace, Luana Pereira Borba-Santos, Sonia Rozental, Juliany Cola Fernandes Rodrigues, Maribel Navarro","doi":"10.1093/mtomcs/mfaf012","DOIUrl":"10.1093/mtomcs/mfaf012","url":null,"abstract":"<p><p>In an attempt to treat neglected diseases such as leishmaniasis and fungal infections, three novel copper(II) hybrid have been developed: [Cu(dppz)(CTZ)(NO3)](NO3) (1), [Cu(dppz)(KTZ)(H2O)(NO3)](NO3) (2), and [Cu(dppz)(FLZ)(NO3)]2(NO3)2 (3). They were synthesized by coordinating antifungal imidazole based drugs and dipyridophenazine as ligands to copper(II) under mild conditions and in good yields. These coordination compounds were characterized by various analytical and spectroscopic techniques which confirmed the coordination of both ligands to the metal, and the monodentate (1) or bidentate (2 and 3) coordination of the nitrate and as counterion. These copper hybrids were stable in solid state, in dimethyl sulfoxide (DMSO) and the DMSO-water mixture. DNA interactions were studied using absorption and fluorescence titrations, viscosity measurements, and electrophoresis assays. Complexes 1 and 2 formed strong interaction with DNA. The activity against Leishmania was the highest with complex 3, unlike against Sporothrix brasiliensis, where the free imidazole-based drugs (ITZ and KTZ) performed better.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metal(loid)s' dilemma. What's the next step for a new era of inorganic molecules in medicine? 金属(金属)的困境。无机分子在医学领域的新时代的下一步是什么?
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-05-05 DOI: 10.1093/mtomcs/mfaf013
Lorenzo Chiaverini, Riccardo Di Leo, Luca Famlonga, Matteo Pacini, Emma Baglini, Elisabetta Barresi, Massimiliano F Peana, Iogann Tolbatov, Alessandro Marrone, Diego La Mendola, Jürgen Gailer, Tiziano Marzo
{"title":"The metal(loid)s' dilemma. What's the next step for a new era of inorganic molecules in medicine?","authors":"Lorenzo Chiaverini, Riccardo Di Leo, Luca Famlonga, Matteo Pacini, Emma Baglini, Elisabetta Barresi, Massimiliano F Peana, Iogann Tolbatov, Alessandro Marrone, Diego La Mendola, Jürgen Gailer, Tiziano Marzo","doi":"10.1093/mtomcs/mfaf013","DOIUrl":"10.1093/mtomcs/mfaf013","url":null,"abstract":"<p><p>In this paper, we critically examine the key challenges associated with the development of inorganic drugs, a field that remains underrepresented despite its significant therapeutic potential. Currently, most clinically approved pharmaceuticals are organic compounds, a trend driven by multiple interconnected factors that have historically limited the adoption and regulatory approval of metal(loid)-based entities. These challenges include issues related to stability, selectivity, pharmacokinetics, and potential toxicity, which require systematic investigation and innovative solutions. Nevertheless, the profound clinical impact of approved inorganic drugs-particularly transition metal(loid)-based agents for both therapeutic and diagnostic applications-is well-established. The success of these compounds underscores the need for expanded research efforts and optimized clinical protocols to fully harness the advantages of metal-based pharmaceuticals. In this context, we explore emerging strategies to overcome current limitations and accelerate the development of next-generation inorganic drugs. These include the rational design of metal-based therapeutics, the integration of advanced metallomics and metalloproteomics, and the application of AI-driven predictive modeling to improve drug selectivity, bioavailability, and safety. By overcoming these challenges through an interdisciplinary approach, metal-based medicine will advance significantly, expanding its impact across a wide range of therapeutic applications.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetics of metal excretion following different doses of sodium EDTA infusion. 不同剂量EDTA钠输注后金属排泄的药代动力学。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-05-05 DOI: 10.1093/mtomcs/mfaf010
Kathrin Schilling, Francisco Ujueta, Siyue Gao, Will A Anderson, Esteban Escolar, Ana Mon, Ana Navas-Acien, Gervasio A Lamas
{"title":"Pharmacokinetics of metal excretion following different doses of sodium EDTA infusion.","authors":"Kathrin Schilling, Francisco Ujueta, Siyue Gao, Will A Anderson, Esteban Escolar, Ana Mon, Ana Navas-Acien, Gervasio A Lamas","doi":"10.1093/mtomcs/mfaf010","DOIUrl":"https://doi.org/10.1093/mtomcs/mfaf010","url":null,"abstract":"<p><p>Chelation therapy is a promising approach to mitigating health risks associated with toxic metal exposure, which contributes to cardiovascular disease, neurotoxicity, and other chronic conditions. disodium ethylene diamine tetraacetic acid (EDTA) is widely used, but its optimal dosing strategy remains unclear. This study evaluates the dose-dependent efficacy of EDTA in mobilizing toxic metals, including lead (Pb), cadmium (Cd), and gadolinium (Gd), while minimizing the loss of essential metals like copper (Cu) and manganese (Mn) to optimize therapeutic safety and efficacy. Ten volunteers (≥50 years) received 3 infusions at doses of 0.5, 1, and 3 g of EDTA over 30 min, 1 h, and 3 h, respectively. Urine and blood samples were analyzed pre- and post-infusion to assess pharmacokinetics of metal chelation. Urinary Pb excretion increased by 2200% at 0.5 g, with only a marginal gain at higher doses (3300%), supporting low-dose EDTA efficacy. Urinary Cd clearance required 3 g EDTA due to its strong tissue binding. Notably, Gd excretion increased by up to 78 000% even at 0.5 g EDTA, highlighting EDTA's potential to reduce long-term Gd burden post-MRI. Urinary excretion of essential metals varied, with Mn and Zn loss increasing at higher EDTA doses, underscoring the need for dose optimization while Cu and Ca only showed a clear increase urinary excretion at 3 g EDTA. Overall, a 0.5 g EDTA dose effectively mobilized Pb and Gd while minimizing essential metal depletion, reducing infusion time to 30 min, and improving patient compliance. These findings align with TACT and TACT 2 studies, reinforcing EDTA's long-term benefits in Pb reduction and supporting low-dose EDTA as a safe, efficient, and well-tolerated detoxification strategy.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"17 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective inhibition of NikA mediated Ni(II) import in E. coli by the Indium(III)-EDTA complex. 铟(III)-EDTA络合物选择性抑制NikA介导的大肠杆菌中Ni(II)的进口。
IF 2.9 3区 生物学
Metallomics Pub Date : 2025-03-28 DOI: 10.1093/mtomcs/mfaf008
Stephanie Sebastiampillai, Mark Nitz
{"title":"Selective inhibition of NikA mediated Ni(II) import in E. coli by the Indium(III)-EDTA complex.","authors":"Stephanie Sebastiampillai, Mark Nitz","doi":"10.1093/mtomcs/mfaf008","DOIUrl":"10.1093/mtomcs/mfaf008","url":null,"abstract":"<p><p>Nickel is a required nutrient for bacteria to produce [NiFe]-hydrogenase and urease enzymes. [NiFe]-hydrogenase catalyzes the reversible conversion of hydrogen into protons and electrons and urease catalyzes the hydrolysis of urea into carbon dioxide and ammonia-both key in bacterial pathogenesis. As such, nickel trafficking and homeostasis are interesting targets for potential antibacterial strategies. In E. coli, NikA binds a Ni(II)-(L-His)2 chelate in the periplasm and delivers this complex to the NikBCDE transporter. Blocking Ni(II) uptake by NikA would prevent the biosynthesis of active [NiFe]-hydrogenase. Fe(III)-EDTA is a potent ligand for NikA, however due to the potential for reduction of Fe(III) to Fe(II), it has limited utility. Using Fe(III)-EDTA as a starting point for inhibitor design, similar stable complexes of Bismuth(III), Lutetium(III) and Indium(III) were investigated. The In(III)-EDTA complex is a potent inhibitor of cellular [NiFe]-hydrogenase activity (IC50 of 600 μM ± 100 μM) while being nontoxic to bacterial growth. The mechanism of In(III)-EDTA hydrogenase inhibition was confirmed by the inhibition of Ni(II)-dependent processing of HycE (hydrogenase-3), which could be rescued with the addition of exogenous nickel. To elucidate the binding affinity of In(III)-EDTA to NikA, isothermal titration calorimetry (ITC) was carried out, revealing stoichiometric 1:1 binding with a Kd of 17.3 µM ± 3.0 µM. Indium concentrations determined by inductively coupled plasma mass spectrometry in E. coli cells in the presence or absence of NikA showed no discernable difference, further supporting the competitive inhibition of nickel uptake by blocking NikA.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信