Metallomics最新文献

筛选
英文 中文
Dietary Iron Intake Has Long-Term Effects on the Fecal Metabolome and Microbiome. 膳食铁摄入对粪便代谢组和微生物组有长期影响
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-07-11 DOI: 10.1093/mtomcs/mfae033
Anastasiia Kostenko, Simone Zuffa, Hui Zhi, Kevin Mildau, Manuela Raffatellu, Pieter C Dorrestein, Allegra T Aron
{"title":"Dietary Iron Intake Has Long-Term Effects on the Fecal Metabolome and Microbiome.","authors":"Anastasiia Kostenko, Simone Zuffa, Hui Zhi, Kevin Mildau, Manuela Raffatellu, Pieter C Dorrestein, Allegra T Aron","doi":"10.1093/mtomcs/mfae033","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae033","url":null,"abstract":"<p><p>Iron is essential for life, but its imbalances can lead to severe health implications. Iron deficiency is the most common nutrient disorder worldwide, and iron disregulation in early life has been found to cause long-lasting behavioral, cognitive, and neural effects. However, little is known about the effects of dietary iron on gut microbiome function and metabolism. In this study, we sought to investigate the impact of dietary iron on the fecal metabolome and microbiome by using mice fed with three diets with different iron content: an iron deficient, an iron sufficient (standard), and an iron overload diet for seven weeks. Additionally, we sought to understand whether any observed changes would persist past the 7-week period of diet intervention. To assess this, all feeding groups were switched to a standard diet, and this feeding continued for an additional 7 weeks. Analysis of the fecal metabolome revealed that iron overload and deficiency significantly alter levels of peptides, nucleic acids, and lipids, including di- and tri-peptides containing branched-chain amino acids, inosine and guanosine, and several microbial conjugated bile acids. The observed changes in the fecal metabolome persist long after the switch back to a standard diet, with the cecal gut microbiota composition and function of each group distinct after the 7-week standard diet wash-out. Our results highlight the enduring metabolic consequences of nutritional imbalances, mediated by both host and gut microbiome, which persist after returning to original standard diets.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells. 线粒体靶向环金属化 Ir(III)-5,7- 二溴/二氯-2-甲基-8-羟基喹啉配合物及其在 Hep-G2 细胞中的抗癌效果评估。
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-07-02 DOI: 10.1093/mtomcs/mfae032
Ting Meng, Xiongzhi Shi, Hongfen Chen, Zhong Xu, Weirong Qin, Kehua Wei, Xin Yang, Jin Huang, Chuanan Liao
{"title":"Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells.","authors":"Ting Meng, Xiongzhi Shi, Hongfen Chen, Zhong Xu, Weirong Qin, Kehua Wei, Xin Yang, Jin Huang, Chuanan Liao","doi":"10.1093/mtomcs/mfae032","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae032","url":null,"abstract":"<p><p>Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline (HL-2) as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate (IR) was 63.0% (p <0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. 在缺乏 SLC30A10 转运体的小鼠(而非大鼠)体内,甲状腺锰升高会减少甲状腺碘,从而诱发甲状腺功能减退症。
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-07-01 DOI: 10.1093/mtomcs/mfae029
Steven Hutchens, Ashvini Melkote, Thomas Jursa, William Shawlot, Leonardo Trasande, Donald R Smith, Somshuvra Mukhopadhyay
{"title":"Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter.","authors":"Steven Hutchens, Ashvini Melkote, Thomas Jursa, William Shawlot, Leonardo Trasande, Donald R Smith, Somshuvra Mukhopadhyay","doi":"10.1093/mtomcs/mfae029","DOIUrl":"10.1093/mtomcs/mfae029","url":null,"abstract":"<p><p>Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced axon guidance and synaptic markers in rat brains using ferric-tannic nanoparticles. 使用鞣酸铁纳米粒子增强大鼠大脑中的轴突导向和突触标记。
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-07-01 DOI: 10.1093/mtomcs/mfae031
Jantira Sanit, Jannarong Intakhad, Aiyarin Kittilukkana, Arpamas Vachiraarunwong, Rawiwan Wongpoomchai, Chalermchai Pilapong
{"title":"Enhanced axon guidance and synaptic markers in rat brains using ferric-tannic nanoparticles.","authors":"Jantira Sanit, Jannarong Intakhad, Aiyarin Kittilukkana, Arpamas Vachiraarunwong, Rawiwan Wongpoomchai, Chalermchai Pilapong","doi":"10.1093/mtomcs/mfae031","DOIUrl":"10.1093/mtomcs/mfae031","url":null,"abstract":"<p><p>Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines. A single intravenous injection of a safe dose of FTs has been shown to activate a protein expression of axon attractant Netrin-1 and neurotransmitter receptor GABRA4 in the cerebral cortexes of male Wistar rats. According to RNA-seq with targeted analysis, axon guidance and synapses have been enriched and Ephrin membered genes have been identified as coordinating a network of genes for such processes. In vitro, as expected, FTs are also found to activate axon guidance markers and promote neuronal tubes in neuronal cell lines. At the same time, pre-synaptic markers (synaptophysin), post-synaptic markers (synapsin), and GABRA4 neurotransmitter receptors have been found to be activated by FTs. Interestingly, synaptophysin has been found to localize along the promoted neuronal tubes, suggesting that enhanced axon guidance is associated with the formation and transportation of pre-synaptic vesicles. Preliminarily, repeated injection of FTs into adult rats every 3 days for 10 times could enhance an expression of synaptophysin in the cerebral cortex, as compared to control rats. This work demonstrates that FTs can be used for activating brain function associated with axon guidance and synaptic function.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disruption of Bacterial Biofilms by a Green Synthesized Artemisinin Nano-copper Nanomaterial. 一种绿色合成青蒿素纳米铜材料对细菌生物膜的破坏作用
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-06-27 DOI: 10.1093/mtomcs/mfae030
Yan Zhang, Xia Hua, Xiaohu Han, Xue Fang, Peng Li, Jingbo Zhai, Lin Xie, Yanming Lv, Yonghao Lai, Chengcheng Meng, Yi Zhang, Shiwei Liu, Zeliang Chen
{"title":"Disruption of Bacterial Biofilms by a Green Synthesized Artemisinin Nano-copper Nanomaterial.","authors":"Yan Zhang, Xia Hua, Xiaohu Han, Xue Fang, Peng Li, Jingbo Zhai, Lin Xie, Yanming Lv, Yonghao Lai, Chengcheng Meng, Yi Zhang, Shiwei Liu, Zeliang Chen","doi":"10.1093/mtomcs/mfae030","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae030","url":null,"abstract":"<p><p>Bacterial biofilms are associated with antibiotic resistance and account for approximately 80% of all bacterial infections. In this study, we explored novel nanomaterials for combating bacteria and their biofilms. Artemisinin nano-copper (ANC) was synthesised using a green synthesis strategy, and its shape, size, structure, elemental composition, chemical valence, zeta potential, and conductivity were characterised using transmission electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, zeta potential, and dynamic light scattering (DLS). The results showed that ANC was successfully synthesised utilizing a liquid-phase chemical reduction method using chitosan as a modified protectant and l-ascorbic acid as a green reducing agent. The stability of ANC was evaluated using DLS. The results showed that the particle size of the ANC at different concentrations was comparable to that of the original solution after 7 days of storage, and there was no significant change in PDI (P > 0.05). The antibacterial effects of ANC on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were determined by Disk diffusion and broth dilution methods. The results demonstrated that ANC inhibited and killed E. coli and S. aureus. The effect of ANC on bacterial biofilms was investigated using Crystal Violet staining, scanning electron microscopy, laser confocal microscope, and quantitative PCR. The results showed that ANC treatment was able to destroy bacterial biofilms and downregulate biofilm- and virulence-related genes in E. coli (HlyA, gyrA, and F17) and S. aureus (cna, PVL, ClfA, and femB). Green-synthesised ANC possesses excellent anti-biofilm properties and is expected to exhibit antibacterial and anti-biofilm properties.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of carbonic anhydrase I released from red blood cells with human plasma in vitro. 红细胞释放的碳酸酐酶 I 与人体血浆在体外的相互作用。
IF 2.9 3区 生物学
Metallomics Pub Date : 2024-06-04 DOI: 10.1093/mtomcs/mfae028
Maryam Doroudian, Jürgen Gailer
{"title":"Interaction of carbonic anhydrase I released from red blood cells with human plasma in vitro.","authors":"Maryam Doroudian, Jürgen Gailer","doi":"10.1093/mtomcs/mfae028","DOIUrl":"10.1093/mtomcs/mfae028","url":null,"abstract":"<p><p>Red blood cells (RBCs) constitute ∼50% of the bloodstream and represent an important target for environmental pollutants and bacterial/viral infections, which can result in their rupture. In addition, diseases such as sickle cell anaemia and paroxysmal nocturnal haemoglobinuria can also result in the rupture of RBCs, which can be potentially life-threatening. With regard to the release of cytosolic metalloproteins from RBCs into the blood-organ system, the biochemical fate of haemoglobin is rather well understood, while comparatively little is known about another highly abundant Zn-metalloprotein, carbonic anhydrase (CA I). To gain insight into the interaction of CA I with human blood plasma constituents, we have employed a metallomics tool comprised of size-exclusion chromatography (SEC) coupled online with an inductively coupled plasma atomic emission spectrometer (ICP-AES), which allows to simultaneously observe all Cu, Fe, and Zn-metalloproteins. After the addition of CA I to human blood plasma incubated at 37°C, the SEC-ICP-AES analysis using phosphate buffered saline (pH 7.4) after 5 min, 1 h, and 2 h revealed that CA I eluted after all endogenous Zn-metalloproteins in the 30 kDa range. Matrix-assisted laser desorption-time of flight mass spectrometry analysis of the collected Zn-peak confirmed that CA I eluted from the column intact. Our in vitro results suggest that CA I released from RBCs to plasma remains free and may be actively involved in health-relevant adverse processes that unfold at the bloodstream-endothelial interface, including atherosclerosis and vision loss.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. 具有硫酰吡唑配体的新型双核铜(II)配合物:合成、晶体结构、杀菌、细胞抑制和细胞毒性活性。
IF 3.4 3区 生物学
Metallomics Pub Date : 2024-06-04 DOI: 10.1093/mtomcs/mfae024
Vnira R Akhmetova, Nail S Akhmadiev, Aidar T Gubaidullin, Aida I Samigullina, Andrey B Glazyrin, Rais A Sadykov, Diana V Ishmetova, Yulia V Vakhitova
{"title":"Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity.","authors":"Vnira R Akhmetova, Nail S Akhmadiev, Aidar T Gubaidullin, Aida I Samigullina, Andrey B Glazyrin, Rais A Sadykov, Diana V Ishmetova, Yulia V Vakhitova","doi":"10.1093/mtomcs/mfae024","DOIUrl":"10.1093/mtomcs/mfae024","url":null,"abstract":"<p><p>New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach. 大鼠体内锌同位素的膳食和体内平衡控制:控制进食实验和建模方法。
IF 3.4 3区 生物学
Metallomics Pub Date : 2024-06-04 DOI: 10.1093/mtomcs/mfae026
Nicolas Bourgon, Théo Tacail, Klervia Jaouen, Jennifer N Leichliter, Jeremy McCormack, Daniela E Winkler, Marcus Clauss, Thomas Tütken
{"title":"Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach.","authors":"Nicolas Bourgon, Théo Tacail, Klervia Jaouen, Jennifer N Leichliter, Jeremy McCormack, Daniela E Winkler, Marcus Clauss, Thomas Tütken","doi":"10.1093/mtomcs/mfae026","DOIUrl":"10.1093/mtomcs/mfae026","url":null,"abstract":"<p><p>The stable isotope composition of zinc (δ66Zn), which is an essential trace metal for many biological processes in vertebrates, is increasingly used in ecological, archeological, and paleontological studies to assess diet and trophic level discrimination among vertebrates. However, the limited understanding of dietary controls and isotopic fractionation processes on Zn isotope variability in animal tissues and biofluids limits precise dietary reconstructions. The current study systematically investigates the dietary effects on Zn isotope composition in consumers using a combined controlled feeding experiment and box-modeling approach. For this purpose, 21 rats were fed one of seven distinct animal- and plant-based diets and a total of 148 samples including soft and hard tissue, biofluid, and excreta samples of these individuals were measured for δ66Zn. Relatively constant Zn isotope fractionation is observed across the different dietary groups for each tissue type, implying that diet is the main factor controlling consumer tissue δ66Zn values, independent of diet composition. Furthermore, a systematic δ66Zn diet-enamel fractionation is reported for the first time, enabling diet reconstruction based on δ66Zn values from tooth enamel. In addition, we investigated the dynamics of Zn isotope variability in the body using a box-modeling approach, providing a model of Zn isotope homeostasis and inferring residence times, while also further supporting the hypothesis that δ66Zn values of vertebrate tissues are primarily determined by that of the diet. Altogether this provides a solid foundation for refined (paleo)dietary reconstruction using Zn isotopes of vertebrate tissues.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140955253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of barium deficiency with Type 2 diabetes mellitus incident risk was mediated by mitochondrial DNA copy number (mtDNA-CN): A follow-up study. 线粒体DNA拷贝数(mtDNA-CN)介导钡缺乏症与2型糖尿病发病风险的关系:随访研究。
IF 3.4 3区 生物学
Metallomics Pub Date : 2024-05-21 DOI: 10.1093/mtomcs/mfae027
Yiqin Zhang, Jing Ye, Lina Zhou, Xianfa Xuan, Liping Xu, Xia Cao, Tianyu Lv, Jianhua Yan, Siyu Zhang, Yuxin Wang, Qingyu Huang, Meiping Tian
{"title":"Association of barium deficiency with Type 2 diabetes mellitus incident risk was mediated by mitochondrial DNA copy number (mtDNA-CN): A follow-up study.","authors":"Yiqin Zhang, Jing Ye, Lina Zhou, Xianfa Xuan, Liping Xu, Xia Cao, Tianyu Lv, Jianhua Yan, Siyu Zhang, Yuxin Wang, Qingyu Huang, Meiping Tian","doi":"10.1093/mtomcs/mfae027","DOIUrl":"https://doi.org/10.1093/mtomcs/mfae027","url":null,"abstract":"<p><p>Accumulating evidence indicates that plasma metals levels may associate with Type 2 diabetes mellitus (T2DM) incident risk. Mitochondrial function such as mitochondrial DNA copy number (mtDNA-CN) might be linked metal exposure and physiological metabolism. Mediation analysis was conducted to determine the mediating roles of mtDNA-CN in the associations of plasma metals with diabetes risk. In the present study, we investigated associations between plasma metals levels, mtDNA-CN and T2DM incident in elderly population with 6-year follow-up (2 times) study. Ten plasma metals (i.e. manganese (Mg), aluminium (Al), calcium (Ca), ferrum (Fe), barium (Ba), arsenic (As), copper (Cu), selenium (Se), titanium (Ti) and cesium (Sr) were measured by using inductively coupled plasma mass spectrometry (ICP-MS). Mitochondrial DNA copy number was measured by real-time PCR. Multivariable linear regression and logistic regression models were carried out to estimate the relationship between plasma metal concentrations, mtDNA-CN and T2DM incident risk in the current work. Plasma Ba deficiency and mtDNA-CN decline associated with T2DM incident risk during aging process. Meanwhile plasma Ba found to be positively associated with mtDNA-CN. Mitochondrial function mtDNA-CN demonstrated mediating effects in association between plasma Ba deficiency and T2DM incident risk, and 49.8% of the association was mediated by mtDNA-CN. These findings extend the knowledge of T2DM incident risk factors and highlight the point that mtDNA-CN may be linked metals element and T2DM incident risk.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript. 草履虫暴露于镉的特异性阶段确定了独特的转录组反应级联和一种未表征的镉反应转录本。
IF 3.4 3区 生物学
Metallomics Pub Date : 2024-05-02 DOI: 10.1093/mtomcs/mfae016
Norah Almutairi, Naema Khan, Alexandra Harrison-Smith, Volker M Arlt, Stephen R Stürzenbaum
{"title":"Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript.","authors":"Norah Almutairi, Naema Khan, Alexandra Harrison-Smith, Volker M Arlt, Stephen R Stürzenbaum","doi":"10.1093/mtomcs/mfae016","DOIUrl":"10.1093/mtomcs/mfae016","url":null,"abstract":"<p><p>Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信