Elias C. J. Gießelmann, Stefan Engel, Svenja Pohl, Max Briesenick, Lukas P. Rüthing, Cedric Kloos, Aylin Koldemir, Lars Schumacher, Joshua Wiethölter, Jörn Schmedt auf der Günne, Guido Kickelbick, Oliver Janka
{"title":"Rapid Synthesis of a Green Emitting Phosphor by Sulfidation of Intermetallic EuAl2 and its Use in a Hybrid Material","authors":"Elias C. J. Gießelmann, Stefan Engel, Svenja Pohl, Max Briesenick, Lukas P. Rüthing, Cedric Kloos, Aylin Koldemir, Lars Schumacher, Joshua Wiethölter, Jörn Schmedt auf der Günne, Guido Kickelbick, Oliver Janka","doi":"10.1021/acs.chemmater.4c02093","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02093","url":null,"abstract":"Ternary sulfides are usually synthesized from the binary sulfidic precursors at elevated temperatures using prolonged reaction times and sometimes H<sub>2</sub>S atmosphere to remove residual oxygen. The direct synthesis from the elements is usually hampered by the highly exothermic reaction vaporizing the sulfur. One way to suppress this exothermic reaction is to use a prereacted metallic precursor. In this work, the well-defined and crystalline intermetallic compounds CaAl<sub>2</sub>, SrAl<sub>2</sub>, and EuAl<sub>2</sub> have been reacted with elemental sulfur in less than 24 h at 1173 K achieving phase pure samples of CaAl<sub>2</sub>S<sub>4</sub>, SrAl<sub>2</sub>S<sub>4</sub>, and EuAl<sub>2</sub>S<sub>4</sub>, according to powder X-ray diffraction. While the first two are extremely sensitive to moisture, the latter is air and moisture stable and could therefore be characterized with respect to its magnetic and luminescent properties as well as by <sup>151</sup>Eu Mössbauer spectroscopy. All methods clearly confirm the divalent oxidation state of the Eu atoms. Since CaAl<sub>2</sub>S<sub>4</sub> and SrAl<sub>2</sub>S<sub>4</sub> are diamagnetic materials, we have investigated these by <sup>27</sup>Al solid state MAS NMR to verify the crystal structure and gain further information about the local Al environment. Subsequently, three polysiloxane-polysilsesquioxane-based materials with phenyl, naphthyl, and phenanthrenyl groups were used as a water impermeable material to embed powdered EuAl<sub>2</sub>S<sub>4</sub> and investigate the luminescent properties of the resulting hybrid material.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"32 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heteroatom-Induced Fractal Growth for Hierarchical Zeolites","authors":"Yilun Ding, Yihan Ye, Dengyun Miao, Haodi Wang, Jingyao Feng, Jiaqi Qu, Yongzhi Zhao, Ziquan Chen, Peng Zhang, Runsheng Yu, Xingzhong Cao, Xiulian Pan, Xinhe Bao","doi":"10.1021/acs.chemmater.4c01850","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c01850","url":null,"abstract":"Hierarchical zeolites have been demonstrated to be advantageous in catalysis and adsorption applications due to facilitated diffusion without degrading its molecule sieving function. However, the direct synthesis of hierarchical zeolites in one step is still challenging. Herein, we report a simple one-step synthesis of single-crystalline hierarchical zeolites by fractal growth induced by the strong adsorption of heteroatom metal species on the initially formed crystals. This method is feasible in the presence of a variety of metal species (M–OH), which can develop a stronger hydrogen bond with Si–OH in comparison to that among Si–OH themselves, such as Ti, Sn, Ga, Nb, and V. Furthermore, the method is versatile as substantiated with several common zeolites, including ZSM-5, TS-1, and ZSM-11. Such a hierarchical zeolite exhibits significantly enhanced activity in polyethylene pyrolysis and a remarkably prolonged lifetime in methanol conversion to hydrocarbons due to facilitated diffusion.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"48 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical and Electronic Properties of Bulk and Surface Li6PS5Cl Argyrodite: First-Principles Insights on Li-Filament Resistance","authors":"Gregory Pustorino, Harsh Jagad, Wenzao Li, Min Feng, Matteo Poma, Jeonghyun Ko, Priya Johari, Yue Qi","doi":"10.1021/acs.chemmater.4c02577","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02577","url":null,"abstract":"Different Li-filament growth patterns have been experimentally observed in numerous solid electrolytes (SEs) with high ionic conductivity such as garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) and argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC). Herein, we probed the mechanical and electronic properties of LPSC, using density functional theory calculations, and compared with other SEs to determine the relevant descriptors for predicting Li-filament resistance. LPSC has a complicated structure that can incorporate S<sup>2–</sup>/Cl<sup>–</sup> inversion and has Li<sup>+</sup> distributed among two Wyckoff sites (24g and 48h). A representative bulk structure that incorporates both phenomena was determined via systematic structure sampling. The lowest energy bulk structures had a majority of Li<sup>+</sup> in 48h sites after relaxation, agreeing with experimental studies. The Young’s modulus and shear modulus of bulk LPSC are low, ∼10–30 GPa, and the fracture energy of cleaving along the (100)-Li<sub>2</sub>S-deficient surface is also low, 0.20 J/m<sup>2</sup>, suggesting poor mechanical resistance to filament growth. The crack surfaces and pore surfaces in LPSC have a similar bandgap and excess electron distribution compared to bulk LPSC, suggesting that these internal defects will not trap electrons to reduce Li<sup>+</sup> to Li-metal. Thus, LPSC is likely to experience “dry” cracks, with a mechanical crack opening up first, followed by a Li-filament filling the crack. This is opposite to LLZO, which has a high fracture energy and experiences electron localization at internal defects (e.g., crack surfaces, pore surfaces, and grain boundaries). LLZO has been experimentally observed to suffer “wet” cracks.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"112 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akane Inoo, Junichi Inamoto, Koji Nakanishi, So Fujinami, Yoshiaki Matsuo
{"title":"Electrochemical Chlorozincate Anion Intercalation into Layered Carbon Materials for the Cathodes of Aqueous Zinc Metal Secondary Batteries","authors":"Akane Inoo, Junichi Inamoto, Koji Nakanishi, So Fujinami, Yoshiaki Matsuo","doi":"10.1021/acs.chemmater.4c02551","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02551","url":null,"abstract":"Aqueous zinc metal secondary batteries (ZSBs) are expected to be next-generation secondary batteries, and it is important to explore cathode materials and electrolyte solutions that exhibit excellent electrochemical properties for their practical use. In this study, we employed a layered carbon material named graphene-like graphite (GLG) as a cathode active material and a concentrated aqueous zinc chloride solution as an electrolyte solution, and its electrochemical anion intercalation reaction was investigated. As a result, GLG obtained at 300 °C of thermal treatment (GLG300) exhibited lower anion intercalation potential and better Coulombic efficiency in ZnCl<sub>2</sub>·2.33H<sub>2</sub>O compared to graphite and GLG obtained at 700 °C. X-ray diffraction measurement suggested that GLG300 formed a stage-1 intercalation compound at 1.8 V vs Zn<sup>2+</sup>/Zn, and extended X-ray absorption fine structure analysis revealed that the intercalated anion was hydrated [ZnCl<sub>4</sub>]<sup>2–</sup>. The initial discharge capacity of GLG300 was approximately 170 mAh g<sup>–1</sup> in the potential range of 0.5–2.2 V with a current density of 20 mA g<sup>–1</sup>. The charge–discharge cycling test showed that GLG300 had good reversibility, the discharge capacity remained above 110 mAh g<sup>–1</sup>, and the Coulombic efficiency approached nearly 100% at the 50th cycle. These results demonstrated that the system using GLG300 and concentrated aqueous zinc chloride solution exhibits excellent cathode properties as aqueous ZSBs and showed great promise for their future practical use.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"19 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enriching Unsaturated Coordination for High-Performance Chromium Oxide Catalysts","authors":"Mingxin Lv, Qiang Li, Fan Xue, Zhiguo Li, Peixi Zhang, Longlong Fan, Jianrong Zeng, Mengshi Li, Yufei He, Dianqing Li, Qiheng Li, Xin Chen, Kun Lin, Jinxia Deng, Xianran Xing","doi":"10.1021/acs.chemmater.4c02260","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02260","url":null,"abstract":"Chromium oxide catalysts are a type of industrial catalyst that is commonly utilized in heterogeneous catalytic processes. Their outstanding catalytic activity is accomplished through the efficient interception of unsaturated coordination and favored surface aggregation. However, the increase of surficial unsaturated coordination and its structural characterization continues to challenge the limitations of chemical synthesis and atomic decoding of nanocatalysts. In this study, a thermal shock method was employed to intercept a significant number of unsaturated coordination and high-valence chromium species in CrO<sub><i>x</i></sub>-based nanocatalysts. The transformation of nearest-neighbor symmetry from octahedral to tetrahedral was discovered to be centered on the surface of the nanoparticle through the atomic recognition of chromium species using the pair distribution function (PDF) and reverse Monte Carlo (RMC). The catalytic efficacy of symbolic catalytic reactions, such as the dehydrogenation of propane, toluene oxidation, and benzyl alcohol oxidation, is enhanced by the precise synthesis of the surficial active sites. Our results demonstrate a convenient chemical synthesis method that preserves the metastable structure of oxide catalysts under thermal shock. The atomic structural understanding also offers an intuitional experimental model for the study of reaction mechanisms.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymorphs of NASICON-Type Na3Sc2(PO4)3/Eu2+ Phosphors Analyzed by Single Crystal Structure Determination and Molecular Dynamics Simulations","authors":"Mizuki Watanabe, Masato Iwaki, Atsushi Itadani, Tadashi Ishigaki, Kazuyoshi Uematsu, Kenji Toda, Mineo Sato","doi":"10.1021/acs.chemmater.4c01778","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c01778","url":null,"abstract":"This study aimed to determine the site assignment of Eu<sup>2+</sup> in the Na<sub>3</sub>Sc<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/Eu<sup>2+</sup> (NSP/Eu<sup>2+</sup>) host lattice for phosphors with NASICON-type frameworks. For this purpose, molecular dynamics (MD) simulations, in which an adiabatic shell method based on crystal structure refinement data for polymorphs of NSP, was employed and verified to be effective. Precise crystal structure analysis of good-quality single crystals indicated the presence of three types of phases: a γ phase assigned to the <i>R</i>3̅<i>c</i> space group [γ(trig)-NSP] reported previously, a monoclinic phase assigned to the <i>I</i>2/<i>a</i> space group [α(mono)-NSP], and another monoclinic phase assigned to the <i>C</i>2/<i>c</i> space group [γ(mono)-NSP]. In the MD simulations of α(mono)-NSP with two crystallographically independent Na sites, Na<sup>+</sup> ion hopping between the sites frequently occurred. However, the MD simulations of the cells with one type of Na<sup>+</sup> ion partially replaced by an Eu<sup>2+</sup> ion and vacancy showed that the Eu<sup>2+</sup> ions were preferentially located at a distorted octahedral site, and Na<sup>+</sup> ion hopping did not occur. The α(mono)-NSP-phase Eu<sup>2+</sup>-doped phosphors obtained via a conventional solid-state reaction method exhibited intense blue luminescence, which was assigned to the Eu<sup>2+</sup> d–f transition, under irradiation at 370 nm, whereas the intensity of the light emitted by the (trig)-phase phosphors was lower. The luminescence and thermal quenching of the α(mono)-NSP phase phosphors was improved when K<sup>+</sup> ions were substituted at Na<sup>+</sup> ion sites. The quantum yields were significantly improved compared to those of NSP/Eu<sup>2+</sup>, being almost comparable with those of a commercial BaMgAl<sub>10</sub>O<sub>17</sub>/Eu<sup>2+</sup> (BAM) phosphor. The luminescence properties of NSP/Eu<sup>2+</sup> are discussed based on the crystal structure refinement and MD simulation results.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"24 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bayesian Optimization-Assisted Engineering of Formate Dehydrogenase Encapsulation in Multivariate Zeolitic Imidazolate Framework","authors":"Weibin Liang, Sisi Zheng, Ying Shu, Jun Huang","doi":"10.1021/acs.chemmater.4c02816","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02816","url":null,"abstract":"Engineering of multivariate zeolitic imidazolate frameworks (mZIFs) offers substantial potential for optimizing enzyme encapsulation by enhancing encapsulation efficiency (EE), enzyme loading capacity (<i>P</i><sub>loading</sub>), retained enzymatic activity (REA), and protection. However, this area remains underexplored. In this study, we rationally employed three imidazole-based ligands with distinct functionalities─HeIM (2-ethylimidazole), HTz (1,2,4-triazole), and HIM (1-(2-hydroxyethyl)imidazole)─to fine-tune hydrophobicity and defect simultaneously within FDH@mZIF (FDH = formate dehydrogenase). Leveraging an iterative Bayesian optimization-assisted training-design-synthesis-measurement workflow, we efficiently identified F190 as the best FDH@mZIF, achieving EE = 89.3%, REA = 14.9%, and <i>P</i><sub>loading</sub> = 30.3 wt%. This establishes F190 as the leading FDH-based biocatalyst in the literature. The optimal FDH-mZIF interactions in F190 were reflected by minimal structural perturbation of encapsulated FDH, as evidenced by the ATR-FTIR and fluorescence studies. Additionally, F190 can effectively safeguard the encapsulated FDH against thermal and proteolytic degradation and catalyze CO<sub>2</sub>-to-formate conversion while maintaining activity for at least five cycles without significant activity loss.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"24 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benhur Mekonnen, Delphine Flahaut, Abdel Khoukh, Laurent Perrier, Christelle Miqueu, Antoine Bousquet, Joachim Allouche, David Grégoire
{"title":"Para-Fluoro-Thiol Reaction: Powerful Tool for the Versatile Functionalization of Microporous Materials","authors":"Benhur Mekonnen, Delphine Flahaut, Abdel Khoukh, Laurent Perrier, Christelle Miqueu, Antoine Bousquet, Joachim Allouche, David Grégoire","doi":"10.1021/acs.chemmater.4c02441","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02441","url":null,"abstract":"Hyper-cross-linked polystyrene-like polymers (HCPs) represent a cost-effective, highly stable, and scalable class of porous materials with significant potential for environmental remediation, catalysis, gas storage, and separation applications. Herein, we demonstrate that the introduction of pentafluorostyrene in the precursor HCP formulation and the subsequent para-fluoro-thiol reaction is an efficient and energy-saving strategy to functionalize these materials. The important quantity of thiol compounds available in the market offers a wide variety of chemical functions accessible for microporous materials and tailors the properties of HCPs to the specific sorption application. In this study, the proportion of the three building blocks used in the polymerization is first optimized to obtain HCPs exhibiting high microporosity, large Brunauer–Emmett–Teller surface areas, and pore volumes independent of the incorporated functional groups (hexyl, alcohol, amine, or sulfonate). The efficiency and versatility of the para-fluoro-thiol coupling reaction are then demonstrated. Finally, the HCPs′ CO<sub>2</sub> adsorption capacity was accessed, as an analyte example, using a manometric setup. At ambient pressure, uptake capacity is predominantly governed by surface chemistry alongside textural properties, while at higher pressure, the uptake capacity is correlated with pore volume, with a probable influence of the swelling of the material upon adsorption.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"114 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernest Ahiavi, Jihen Talbi, Trang N. T. Phan, Priscillia Soudant, Fabrice Cousin, Renaud Bouchet, Didier Devaux
{"title":"Ionic Transport Properties and Additive Effect of Lithium Polysulfides in Binary Conducting Poly(ethylene oxide)-Based Copolymer Electrolytes","authors":"Ernest Ahiavi, Jihen Talbi, Trang N. T. Phan, Priscillia Soudant, Fabrice Cousin, Renaud Bouchet, Didier Devaux","doi":"10.1021/acs.chemmater.4c02594","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02594","url":null,"abstract":"Despite the high impact lithium–sulfur (Li–S) batteries can bring in terms of specific energy and battery lifetime, their full advantage has not yet been realized due to inherent issues associated with this technology. The intermediate polysulfide products produced in the positive electrode during discharge dissolve and diffuse in the electrolyte, leading to capacity fading and low Coulombic efficiency. A promising solution to this issue is the use of a solid polymer electrolyte that combines the advantages of an ion-conducting poly(ethylene oxide) (PEO) phase and a mechanically reinforced phase, such as polystyrene (PS), that can suppress the nonuniform electrodeposition of Li onto Li metal. In this work, the possibility of using PS–PEO–PS triblock copolymer as an electrolyte or binder in a Li–S battery was investigated by characterizing the thermodynamical, morphological, and ionic transport properties of lithium polysulfides species (Li<sub>2</sub>S<sub><i>x</i></sub>, with <i>x</i> = 4 and 8). Thermodynamic results showed that the long-chain lithium polysulfide (Li<sub>2</sub>S<sub>8</sub>) is more soluble in the copolymers compared to the short-chain polysulfide (Li<sub>2</sub>S<sub>4</sub>). Meanwhile, the addition of Li<sub>2</sub>S<sub>4</sub> and Li<sub>2</sub>S<sub>8</sub> in the mesostructured block copolymer influences both the phase transition (lamellar or hexagonal) and the domain spacing in a fashion similar to the conventional LiTFSI salt. In terms of ionic transport, the mobility of the polysulfides (S<sub>4</sub><sup>2–</sup> and S<sub>8</sub><sup>2–</sup>) in the copolymers is reduced compared to the TFSI<sup>–</sup> anion, and the cationic transference number remains in the range of 0.5 compared to 0.15 for LiTFSI. To move toward the application, the introduction of Li<sub>2</sub>S<sub>4</sub> into the block copolymer electrolyte is also used as an additive in the presence of LiTFSI salt, resulting in a very low interfacial resistance with the Li metal electrode. The results of these investigations would guide the design of solid polymer electrolytes for application in Li–S batteries.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"25 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duncan A. Peterson, Tyler W. Farnsworth, Adam H. Woomer, Zachary S. Fishman, Sydney H. Shapiro, Rebecca C. Radomsky, Emily A. Barron, Jonathan R. Thompson, Scott C. Warren
{"title":"Generalized Assembly of Semiconductor–Molecule Superlattices","authors":"Duncan A. Peterson, Tyler W. Farnsworth, Adam H. Woomer, Zachary S. Fishman, Sydney H. Shapiro, Rebecca C. Radomsky, Emily A. Barron, Jonathan R. Thompson, Scott C. Warren","doi":"10.1021/acs.chemmater.4c02165","DOIUrl":"https://doi.org/10.1021/acs.chemmater.4c02165","url":null,"abstract":"The synthesis of structurally precise materials that combine diverse building blocks will accelerate the development of artificial solids for electronics, energy, and medicine. Here, we utilize simulation to identify how organic molecules can self-assemble with 2D materials into periodic superlattices with alternating layers of molecules and 2D monolayers. We experimentally demonstrate the generalizability of this mechanism by applying it to 2D semiconductors and various organic molecules or polymers. The resulting superlattices have unique and well-defined lattice constants that depend on the dimensions of the organic species. We are able to design superlattices with a wide variety of molecules (photoresponsive, chelating, light-emitting moieties), suggesting that the self-assembly does not depend on any specific chemical interaction and yet can accommodate chemically diverse functional groups. We also observe that the 2D materials within the superlattices (MoS<sub>2</sub>, WSe<sub>2</sub>) remain quantum-confined, even though the superlattice retains excellent electrical conductivity. This introduction of a mechanism and its experimental realization yield a general design strategy for a large class of quantum-confined, molecule–2D hybrid materials.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"23 7 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}