{"title":"Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress.","authors":"Xinghua Feng, Weijie Cai, Qian Li, Liding Zhao, Yaping Meng, Haoxing Xu","doi":"10.1083/jcb.202403104","DOIUrl":"10.1083/jcb.202403104","url":null,"abstract":"<p><p>Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PI(3,5)P2 asymmetry during mitosis is essential for asymmetric vacuolar inheritance.","authors":"Mariam Huda, Mukadder Koyuncu, Cansu Dilege, Ayse Koca Caydasi","doi":"10.1083/jcb.202406170","DOIUrl":"10.1083/jcb.202406170","url":null,"abstract":"<p><p>Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a low-abundance signaling lipid that plays crucial roles in various cellular processes, including endolysosomal system structure/function, stress response, and cell cycle regulation. PI(3,5)P2 synthesis increases in response to environmental stimuli, yet its behavior in cycling cells under basal conditions remains elusive. Here, we analyzed spatiotemporal changes in PI(3,5)P2 levels during the cell cycle of S. cerevisiae. We found that PI(3,5)P2 accumulates on the vacuole in the daughter cell while it disappears from the vacuole in the mother cell during mitosis. Concomitant with the changes in PI(3,5)P2 distribution, the daughter vacuole became more acidic, whereas the acidity of the mother vacuole decreased during mitosis. Our data further showed that both PI(3,5)P2 and the PI(3,5)P2 effector protein Atg18 are determinants of vacuolar-pH asymmetry and acidity. Our work, thus, identifies PI(3,5)P2 as a key factor for the establishment of vacuolar-pH asymmetry, providing insights into how the mother cell ages while the daughter cell is rejuvenated.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh
{"title":"Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability.","authors":"Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh","doi":"10.1083/jcb.202404085","DOIUrl":"10.1083/jcb.202404085","url":null,"abstract":"<p><p>The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury
{"title":"Kinetochores grip microtubules with directionally asymmetric strength.","authors":"Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury","doi":"10.1083/jcb.202405176","DOIUrl":"10.1083/jcb.202405176","url":null,"abstract":"<p><p>For accurate mitosis, all chromosomes must achieve \"biorientation,\" with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca
{"title":"Ca2+ tunneling architecture and function are important for secretion.","authors":"Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca","doi":"10.1083/jcb.202402107","DOIUrl":"10.1083/jcb.202402107","url":null,"abstract":"<p><p>Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova
{"title":"Unveiling the cell biology of hippocampal neurons with dendritic axon origin.","authors":"Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova","doi":"10.1083/jcb.202403141","DOIUrl":"10.1083/jcb.202403141","url":null,"abstract":"<p><p>In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali
{"title":"Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging.","authors":"Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali","doi":"10.1083/jcb.202403116","DOIUrl":"10.1083/jcb.202403116","url":null,"abstract":"<p><p>Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria E von Saucken, Stefanie E Windner, Giovanna Armetta, Mary K Baylies
{"title":"Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles.","authors":"Victoria E von Saucken, Stefanie E Windner, Giovanna Armetta, Mary K Baylies","doi":"10.1083/jcb.202404052","DOIUrl":"10.1083/jcb.202404052","url":null,"abstract":"<p><p>The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling.","authors":"Takuma Tsuji, Junya Hasegawa, Takehiko Sasaki, Toyoshi Fujimoto","doi":"10.1083/jcb.202311067","DOIUrl":"10.1083/jcb.202311067","url":null,"abstract":"<p><p>Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a phospholipid essential for plasma membrane functions, but its two-dimensional distribution is not clear. Here, we compared the result of sodium dodecyl sulfate-treated freeze-fracture replica labeling (SDS-FRL) of quick-frozen cells with the actual PtdIns(4,5)P2 content and the results obtained by fluorescence biosensor and by labeling of chemically-fixed membranes. In yeast, enrichment of PtdIns(4,5)P2 in the membrane compartment of Can1 (MCC)/eisosome, especially in the curved MCC/eisosome, was evident by SDS-FRL, but not by fluorescence biosensor, GFP-PLC1δ-PH. PtdIns(4,5)P2 remaining after acute ATP depletion and in the stationary phase, 30.0% and 56.6% of the control level, respectively, was not detectable by fluorescence biosensor, whereas the label intensity by SDS-FRL reflected the PtdIns(4,5)P2 amount. In PC12 cells, PtdIns(4,5)P2 was observed in a punctate pattern in the formaldehyde-fixed plasma membrane, whereas it was distributed randomly by SDS-FRL and showed clustering after formaldehyde fixation. The results indicate that the distribution of PtdIns(4,5)P2 can be defined most reliably by SDS-FRL of quick-frozen cells.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"224 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan D Krett, Angeliki G Filippatou, Paula Barreras, Carlos A Pardo, Allan C Gelber, Elias S Sotirchos
{"title":"\"Lupus Myelitis\" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease.","authors":"Jonathan D Krett, Angeliki G Filippatou, Paula Barreras, Carlos A Pardo, Allan C Gelber, Elias S Sotirchos","doi":"10.1212/NXI.0000000000200329","DOIUrl":"https://doi.org/10.1212/NXI.0000000000200329","url":null,"abstract":"<p><strong>Background and objectives: </strong>Previous reports of patients with myelitis associated with rheumatologic disease may have had unrecognized aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorder (NMOSD) or myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD). We clinicoradiologically and serologically characterized patients with myelitis associated with rheumatologic disease evaluated in the era of availability of MOG-IgG and more sensitive AQP4-IgG cell-based assays.</p><p><strong>Methods: </strong>A retrospective cohort (2018-2023) at Johns Hopkins Medicine with diagnoses of myelopathy and rheumatologic comorbidity was identified by electronic medical record (EMR) query. All patients with myelitis unrelated to typical multiple sclerosis (MS) were included and analyzed by chart review.</p><p><strong>Results: </strong>Of 238 patients identified by EMR query, 197 were excluded (148 not meeting prespecified inclusion criteria, 49 had typical MS), resulting in 41 patients for review. The mean age at myelitis onset was 44 ± 15 years; 39 (95%) were female. Rheumatologic diagnoses included 17 (41.5%) with systemic lupus erythematosus (SLE), 10 (24.3%) Sjögren syndrome (SS), 6 (15%) undifferentiated connective tissue disease (UCTD), 5 (12%) combinations of SLE/SS/UCTD with antiphospholipid antibody syndrome, 1 (2.4%) rheumatoid arthritis, 1 (2.4%) psoriatic arthritis, and 1 (2.4%) Behçet disease. 20 patients (49%) were diagnosed with AQP4-IgG seropositive NMOSD, 3 (7%) with MOGAD, and 18 (44%) had \"double-seronegative\" myelitis. Of these 18, 3 were diagnosed with AQP4-IgG seronegative NMOSD, 1 neuro-Behçet disease, and 14 other (unclassifiable) myelitis. Excluding 1 patient with neuro-Behçet disease, 18 (90%) of 20 AQP4-IgG seropositive patients had longitudinally extensive cord lesions compared with 5 (29%; <i>p</i> < 0.001) of 17 \"double-seronegative\" patients and 2 (67%) of 3 with MOGAD. \"Double-seronegative\" patients more commonly had CSF-restricted oligoclonal bands. Functional outcomes did not differ by diagnosis, and most patients received acute immunotherapy at the time of initial myelitis diagnosis with at least partial recovery over a median follow-up of 38 (interquartile range: 9-74) months.</p><p><strong>Discussion: </strong>Approximately half of our rheumatologic disease cohort with myelitis unrelated to MS had AQP4-IgG seropositive NMOSD while MOGAD accounted for a small but clinically relevant proportion of patients. Further research is needed to characterize myelitis etiology in patients who are seronegative for both AQP4-IgG and MOG-IgG.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"12 1","pages":"e200329"},"PeriodicalIF":7.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}