Biomacromolecules最新文献

筛选
英文 中文
Noncanonical Amino Acid Incorporation Modulates Condensate States of Intrinsically Disordered Proteins in Escherichia coli Cells. 非顺式氨基酸整合调节大肠杆菌细胞中内在紊乱蛋白质的凝结状态
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-11 DOI: 10.1021/acs.biomac.4c00864
Ya-Jiao Zhu, Sheng-Chen Huang, Xiao-Xia Xia, Zhi-Gang Qian
{"title":"Noncanonical Amino Acid Incorporation Modulates Condensate States of Intrinsically Disordered Proteins in <i>Escherichia coli</i> Cells.","authors":"Ya-Jiao Zhu, Sheng-Chen Huang, Xiao-Xia Xia, Zhi-Gang Qian","doi":"10.1021/acs.biomac.4c00864","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00864","url":null,"abstract":"<p><p>Biomolecular condensates are distinct subcellular structures with on-demand material states and dynamics in living cells. However, strategies for modulating their material states and physicochemical properties are lacking. Here, we report a chemical strategy for modulating the condensate states of intrinsically disordered proteins in bacterial <i>Escherichia coli</i> cells. This is achieved by noncanonical amino acid (DOPA) incorporation into model resilin-like proteins (RLPs) to endow autonomous oxidative and coordinative cross-linking mechanisms. Biogenesis of spherical gel-like condensates is achieved upon heterologous expression of the DOPA-incorporated RLP in the cells at 30 °C. We reveal that liquid-liquid phase separation underlies the formation of liquid condensates, and this liquid-like state is metastable and its dynamics is compromised by the oxidative and coordinative cross-linkings that ultimately drive the liquid-to-gel transition. Therefore, this study has deepened our understanding of biomolecular condensation and offers a new chemical strategy to expand the landscape of condensation phenotypes of living cells.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification. 二氧化硅与生物大分子的相互作用:从机理上理解硅化。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-09 DOI: 10.1021/acs.biomac.4c00674
Christina A McCutchin, Kevin J Edgar, Chun-Long Chen, Patricia M Dove
{"title":"Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification.","authors":"Christina A McCutchin, Kevin J Edgar, Chun-Long Chen, Patricia M Dove","doi":"10.1021/acs.biomac.4c00674","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00674","url":null,"abstract":"<p><p>Silica-organic composites are receiving renewed attention for their versatility and environmentally benign compositions. Of particular interest is how macromolecules interact with aqueous silica to produce functional materials that confer remarkable physical properties to living organisms. This Review first examines silicification in organisms and the biomacromolecule properties proposed to modulate these reactions. We then highlight findings from silicification studies organized by major classes of biomacromolecules. Most investigations are qualitative, using disparate experimental and analytical methods and minimally characterized materials. Many findings are contradictory and, altogether, demonstrate that a consistent picture of biomacromolecule-Si interactions has not emerged. However, the collective evidence shows that functional groups, rather than molecular classes, are key to understanding macromolecule controls on mineralization. With recent advances in biopolymer chemistry, there are new opportunities for hypothesis-based studies that use quantitative experimental methods to decipher how macromolecule functional group chemistry and configuration influence thermodynamic and kinetic barriers to silicification. Harnessing the principles of silica-macromolecule interactions holds promise for biocomposites with specialized applications from biomedical and clean energy industries to other material-dependent industries.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components. 探索以弹性蛋白样肽重复单元为侧成分的支链分子的 LCST 和 UCST 类行为。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-09 DOI: 10.1021/acs.biomac.4c00751
Naoki Tanaka, Keitaro Suyama, Keisuke Tomohara, Takeru Nose
{"title":"Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components.","authors":"Naoki Tanaka, Keitaro Suyama, Keisuke Tomohara, Takeru Nose","doi":"10.1021/acs.biomac.4c00751","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00751","url":null,"abstract":"<p><p>Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative In Vivo Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models. 在皮下移植模型中比较纤维素衍生网片和合成网片的体内生物相容性
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-07 DOI: 10.1021/acs.biomac.4c00984
Nina M M Peltokallio, Rubina Ajdary, Guillermo Reyes, Esko Kankuri, Jouni J T Junnila, Satu Kuure, Anna S Meller, Jani Kuula, Eija Raussi-Lehto, Hannu Sariola, Outi M Laitinen-Vapaavuori, Orlando J Rojas
{"title":"Comparative <i>In Vivo</i> Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models.","authors":"Nina M M Peltokallio, Rubina Ajdary, Guillermo Reyes, Esko Kankuri, Jouni J T Junnila, Satu Kuure, Anna S Meller, Jani Kuula, Eija Raussi-Lehto, Hannu Sariola, Outi M Laitinen-Vapaavuori, Orlando J Rojas","doi":"10.1021/acs.biomac.4c00984","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00984","url":null,"abstract":"<p><p>Despite the increasing interest in cellulose-derived materials in biomedical research, there remains a significant gap in comprehensive <i>in vivo</i> analyses of cellulosic materials obtained from various sources and processing methods. To explore durable alternatives to synthetic medical meshes, we evaluated the <i>in vivo</i> biocompatibility of bacterial nanocellulose, regenerated cellulose, and cellulose nanofibrils in a subcutaneous transplantation model, alongside incumbent polypropylene and polydioxanone. Notably, this study demonstrates the <i>in vivo</i> biocompatibility of regenerated cellulose obtained through alkali dissolution and subsequent regeneration. All cellulose-derived implants triggered the expected foreign body response in the host tissue, characterized predominantly by macrophages and foreign body giant cells. Porous materials promoted cell ingrowth and biointegration. Our results highlight the potential of bacterial nanocellulose and regenerated cellulose as safe alternatives to commercial polypropylene meshes. However, the <i>in vivo</i> fragmentation observed for cellulose nanofibril meshes suggests the need for measures to optimize their processing and preparation.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Throughput Synthesis and Evaluation of Antiviral Copolymers for Enveloped Respiratory Viruses. 高通量合成和评估针对包膜呼吸道病毒的抗病毒共聚物。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-05 DOI: 10.1021/acs.biomac.4c01049
Hylemariam Mihiretie Mengist, Paul Denman, Charlotte Frost, Julian D J Sng, Saskia Logan, Tejasri Yarlagadda, Kirsten M Spann, Leonie Barner, Kathryn E Fairfull-Smith, Kirsty R Short, Nathan Rb Boase
{"title":"High-Throughput Synthesis and Evaluation of Antiviral Copolymers for Enveloped Respiratory Viruses.","authors":"Hylemariam Mihiretie Mengist, Paul Denman, Charlotte Frost, Julian D J Sng, Saskia Logan, Tejasri Yarlagadda, Kirsten M Spann, Leonie Barner, Kathryn E Fairfull-Smith, Kirsty R Short, Nathan Rb Boase","doi":"10.1021/acs.biomac.4c01049","DOIUrl":"10.1021/acs.biomac.4c01049","url":null,"abstract":"<p><p>COVID-19 made apparent the devastating impact viral pandemics have had on global health and order. Development of broad-spectrum antivirals to provide early protection upon the inevitable emergence of new viral pandemics is critical. In this work, antiviral polymers are discovered using a combination of high-throughput polymer synthesis and antiviral screening, enabling diverse polymer compositions to be explored. Amphipathic polymers, with ionizable tertiary amine groups, are the most potent antivirals, effective against influenza virus and SARS-CoV-2, with minimal cytotoxicity. It is hypothesized that these polymers interact with the viral membrane as they showed no activity against a nonenveloped virus (rhinovirus). The switchable chemistry of the polymers during endosomal acidification was evaluated using lipid monolayers, indicating that a complex synergy between hydrophobicity and ionization drives polymer-membrane interactions. This new high-throughput methodology can be adapted to continue to engineer the potency of the lead candidates or develop antiviral polymers against other emerging viral classes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting Materials Binding Peptides for the Organization of Resilient Biomolecular Constructs. 利用材料结合肽组织弹性生物分子结构。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-05 DOI: 10.1021/acs.biomac.4c00886
Sradha M Thomas, Haixin Zhang, Kun Wang, Marc R Knecht, Tiffany R Walsh
{"title":"Exploiting Materials Binding Peptides for the Organization of Resilient Biomolecular Constructs.","authors":"Sradha M Thomas, Haixin Zhang, Kun Wang, Marc R Knecht, Tiffany R Walsh","doi":"10.1021/acs.biomac.4c00886","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00886","url":null,"abstract":"<p><p>Elastomers based on the resilin protein confer exceptional mechanical resilience in nature, but it remains elusive to recover the remarkable properties of these materials when they are made in the laboratory. This is possibly due to preorganized conformations of resilin in its natural setting, facilitating Tyr-based cross-linking. Here, resilin-like peptides (RLPs) are conjugated with a graphene-binding peptide, P1, to produce P1/RLP conjugates, in which the P1 domain may provide favorable preorganization on a graphene surface. Experiments using quartz crystal microbalance analysis and atomic force microscopy identified that the parent RLPs demonstrate negligible graphene binding; however, integration of the P1 with the RLPs resulted in the formation of dense, patterned bioligand overlayers on graphene. To complement this, molecular simulations revealed a notable difference in binding mode of the conjugates compared with typical materials binding peptides. Specifically, the adsorption of the P1/RLP conjugates did not focus on a few strongly bound \"anchor\" residues, but instead supported a more diffuse mode of binding, with many more participating residues featuring moderate contact. Analysis of the number of available Tyr residues (i.e., those not adsorbed at the surface) indicate that the RLP2-based conjugates will provide greater opportunity for cross-linking when adsorbed on graphene, providing a framework to generate patterned elastomeric materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Cellulose Solutions to Aerogels and Xerogels: Controlling Properties for Drug Delivery. 从纤维素溶液到气凝胶和 Xerogels:控制药物输送特性。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-04 DOI: 10.1021/acs.biomac.4c01074
Loris Gelas, Tatiana Budtova
{"title":"From Cellulose Solutions to Aerogels and Xerogels: Controlling Properties for Drug Delivery.","authors":"Loris Gelas, Tatiana Budtova","doi":"10.1021/acs.biomac.4c01074","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01074","url":null,"abstract":"<p><p>A cheap and easy-to-recycle solvent, namely, aqueous NaOH with no additives, was used to dissolve cellulose and make cross-linker-free materials with varying porosity, testing them as drug delivery devices. Cellulose solutions were gelled, coagulated in a nonsolvent (water, ethanol), and dried either using supercritical CO<sub>2</sub> (aerogels) or low-vacuum evaporation (named \"xerogels\"). Aerogels had densities of around 0.1 g/cm<sup>3</sup> and specific surface areas (SSAs) of 200-400 m<sup>2</sup>/g. A significant influence of the first nonsolvent and drying mode on material properties was recorded: when the first nonsolvent was ethanol and low-vacuum drying was performed from ethanol, aerogel-like xerogels were obtained with densities of around 0.2 g/cm<sup>3</sup> and SSAs of 200-260 m<sup>2</sup>/g. Other conditions (under evaporative drying) resulted in cellulose with much lower porosity and SSA. All materials were evaluated as drug delivery devices in simulated gastrointestinal fluids; theophylline was used as a model drug. Materials of high porosity exhibited shrinking and rapid drug release, whereas denser materials swelled and showed slower release. Two release mechanisms were suggested: diffusion through aqueous media in pores and diffusion through swollen pore walls. The results demonstrate a large spectrum of options for tuning the properties of porous cellulose materials for drug release applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated Ten-Gram-Scale Synthesis of One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer 97. 单组分多功能序列可离子化两亲性 Janus 树枝状聚合物的十克级加速合成 97.
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-03 DOI: 10.1021/acs.biomac.4c01107
Mahwish Arshad, Elena N Atochina-Vasserman, Srijay S Chenna, Devendra S Maurya, Muhammad Irhash Shalihin, Dipankar Sahoo, Alec C Lewis, Jordan J Lewis, Nathan Ona, Jessica A Vasserman, Houping Ni, Wook-Jin Park, Drew Weissman, Virgil Percec
{"title":"Accelerated Ten-Gram-Scale Synthesis of One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer 97.","authors":"Mahwish Arshad, Elena N Atochina-Vasserman, Srijay S Chenna, Devendra S Maurya, Muhammad Irhash Shalihin, Dipankar Sahoo, Alec C Lewis, Jordan J Lewis, Nathan Ona, Jessica A Vasserman, Houping Ni, Wook-Jin Park, Drew Weissman, Virgil Percec","doi":"10.1021/acs.biomac.4c01107","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01107","url":null,"abstract":"<p><p>One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers (IAJDs) were discovered in our laboratories in 2021 to represent a new class of synthetic vectors for the targeted delivery of messenger RNA (mRNA). They coassemble with mRNA by simple injection of their ethanol solution into a pH 4 acetate buffer containing the nucleic acid into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions. DNPs are competitive with 4-component lipid nanoparticles (LNPs), which are used in commercial COVID-19 vaccines, except that IAJDs are prepared in fewer reaction steps than each individual component of the LNPs. This simple methodology for the synthesis of IAJDs and their coassembly with mRNA into DNPs, together with the precise placement of their individual components and indefinite stability at room temperature in air, make them attractive candidates for the development of nanomedicine-based targeted mRNA delivery. Access to the large-scale synthesis of IAJDs without the need for sophisticated technologies, instrumentation, and synthetic skills is expected to open numerous new opportunities worldwide in nanomedicine. The goal of this publication is to report an accelerated ten-gram-scale synthesis of IAJD97 from inexpensive food additives obtained from renewable plant phenolic acid starting materials by methodologies accessible to any laboratory. This accelerated synthesis can be accomplished in 4 days. We expect that the work reported here will impact the field of nanomedicine in both developed and less developed countries.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated Ten-Gram-Scale Synthesis of One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer 97 单组分多功能序列可离子化两亲性 Janus 树枝状聚合物的十克级加速合成 97
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-03 DOI: 10.1021/acs.biomac.4c0110710.1021/acs.biomac.4c01107
Mahwish Arshad, Elena N. Atochina-Vasserman, Srijay S. Chenna, Devendra S. Maurya, Muhammad Irhash Shalihin, Dipankar Sahoo, Alec C. Lewis, Jordan J. Lewis, Nathan Ona, Jessica A. Vasserman, Houping Ni, Wook-Jin Park, Drew Weissman* and Virgil Percec*, 
{"title":"Accelerated Ten-Gram-Scale Synthesis of One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer 97","authors":"Mahwish Arshad,&nbsp;Elena N. Atochina-Vasserman,&nbsp;Srijay S. Chenna,&nbsp;Devendra S. Maurya,&nbsp;Muhammad Irhash Shalihin,&nbsp;Dipankar Sahoo,&nbsp;Alec C. Lewis,&nbsp;Jordan J. Lewis,&nbsp;Nathan Ona,&nbsp;Jessica A. Vasserman,&nbsp;Houping Ni,&nbsp;Wook-Jin Park,&nbsp;Drew Weissman* and Virgil Percec*,&nbsp;","doi":"10.1021/acs.biomac.4c0110710.1021/acs.biomac.4c01107","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c01107https://doi.org/10.1021/acs.biomac.4c01107","url":null,"abstract":"<p >One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers (IAJDs) were discovered in our laboratories in 2021 to represent a new class of synthetic vectors for the targeted delivery of messenger RNA (mRNA). They coassemble with mRNA by simple injection of their ethanol solution into a pH 4 acetate buffer containing the nucleic acid into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions. DNPs are competitive with 4-component lipid nanoparticles (LNPs), which are used in commercial COVID-19 vaccines, except that IAJDs are prepared in fewer reaction steps than each individual component of the LNPs. This simple methodology for the synthesis of IAJDs and their coassembly with mRNA into DNPs, together with the precise placement of their individual components and indefinite stability at room temperature in air, make them attractive candidates for the development of nanomedicine-based targeted mRNA delivery. Access to the large-scale synthesis of IAJDs without the need for sophisticated technologies, instrumentation, and synthetic skills is expected to open numerous new opportunities worldwide in nanomedicine. The goal of this publication is to report an accelerated ten-gram-scale synthesis of IAJD97 from inexpensive food additives obtained from renewable plant phenolic acid starting materials by methodologies accessible to any laboratory. This accelerated synthesis can be accomplished in 4 days. We expect that the work reported here will impact the field of nanomedicine in both developed and less developed countries.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing Biomimetic Strain-Stiffening into Synthetic Hydrogels. 在合成水凝胶中设计仿生应变加固。
IF 5.5 2区 化学
Biomacromolecules Pub Date : 2024-10-02 DOI: 10.1021/acs.biomac.4c00756
Elisabeth Prince
{"title":"Designing Biomimetic Strain-Stiffening into Synthetic Hydrogels.","authors":"Elisabeth Prince","doi":"10.1021/acs.biomac.4c00756","DOIUrl":"https://doi.org/10.1021/acs.biomac.4c00756","url":null,"abstract":"<p><p>Biological tissues are mechanoresponsive; that is, their properties dynamically change in response to mechanical stimuli. For example, in response to shear or elongational strain, collagen, fibrin, actin, and other filamentous biomaterials undergo dramatic strain-stiffening. Above a critical strain, their stiffness increases over orders of magnitude. While it is widely accepted that the stiffness of biological tissues impacts cell phenotype and several diseases, the biological impact of strain-stiffening remains understudied. Synthetic hydrogels that mimic the mechanoresponsive nature of biological tissues could serve as an in vitro platform for these studies. This review highlights recent efforts to mimic the strain-stiffening behavior of biological materials in synthetic hydrogels. We discuss the design principles for imparting synthetic hydrogels with biomimetic strain-stiffening, critically compare designs of strain-stiffening hydrogels that have been reported thus far, and discuss their use as in vitro platforms to probe how strain-stiffening impacts cell behavior, diseases, and other biological processes.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信