具有Zn2+配位网络的木质素基生物可降解地膜的研究。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiaqian Cui, Junwei Tang, Xijiao Bian, Jungang Jiang, Yifan Zhang, Lei Wang
{"title":"具有Zn2+配位网络的木质素基生物可降解地膜的研究。","authors":"Jiaqian Cui, Junwei Tang, Xijiao Bian, Jungang Jiang, Yifan Zhang, Lei Wang","doi":"10.1021/acs.biomac.5c00607","DOIUrl":null,"url":null,"abstract":"<p><p>The environmental persistence of conventional plastic mulch films imposes substantial ecological burdens. With rising demands for sustainable agriculture, biodegradable alternatives attract growing interest. However, existing biobased films often face trade-offs between mechanical robustness, environmental adaptability, and functional versatility. In this study, we fabricated a mechanically enhanced multifunctional lignin-based composite mulch by blending modified sulfate lignin (SKL), poly(vinyl alcohol) (PVA), nanocellulose (CNF), and ZnCl<sub>2</sub>. The work elucidated the synergistic interfacial mechanism underlying its superior properties. Zn<sup>2+</sup> coordination with lignin sulfonic acid groups and SKL/PVA/CNF hydrogen bonding form a hierarchical network. This yields exceptional toughness (40.57 MJ/m<sup>3</sup>), ∼99% UV-blocking, hydrophobicity, moisture barrier, and thermal stability. The film degraded 70% in 40 days─far exceeding conventional mulch (CM). Its inherent biodegradability offers significant potential to replace agricultural plastics, advancing sustainable materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lignin-Based Biodegradable Mulch Film with Zn<sup>2+</sup> Coordination Networks for Sustainable Agriculture.\",\"authors\":\"Jiaqian Cui, Junwei Tang, Xijiao Bian, Jungang Jiang, Yifan Zhang, Lei Wang\",\"doi\":\"10.1021/acs.biomac.5c00607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The environmental persistence of conventional plastic mulch films imposes substantial ecological burdens. With rising demands for sustainable agriculture, biodegradable alternatives attract growing interest. However, existing biobased films often face trade-offs between mechanical robustness, environmental adaptability, and functional versatility. In this study, we fabricated a mechanically enhanced multifunctional lignin-based composite mulch by blending modified sulfate lignin (SKL), poly(vinyl alcohol) (PVA), nanocellulose (CNF), and ZnCl<sub>2</sub>. The work elucidated the synergistic interfacial mechanism underlying its superior properties. Zn<sup>2+</sup> coordination with lignin sulfonic acid groups and SKL/PVA/CNF hydrogen bonding form a hierarchical network. This yields exceptional toughness (40.57 MJ/m<sup>3</sup>), ∼99% UV-blocking, hydrophobicity, moisture barrier, and thermal stability. The film degraded 70% in 40 days─far exceeding conventional mulch (CM). Its inherent biodegradability offers significant potential to replace agricultural plastics, advancing sustainable materials.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c00607\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00607","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统塑料地膜对环境的持久性造成了巨大的生态负担。随着对可持续农业的需求不断增加,可生物降解的替代品吸引了越来越多的兴趣。然而,现有的生物基薄膜经常面临机械稳健性、环境适应性和功能多功能性之间的权衡。在这项研究中,我们通过混合改性硫酸盐木质素(SKL)、聚乙烯醇(PVA)、纳米纤维素(CNF)和ZnCl2制备了一种机械增强的多功能木质素基复合地膜。阐明了其优越性能背后的协同界面机制。Zn2+与木质素磺酸基团配位,SKL/PVA/CNF氢键形成层次化网络。这产生了优异的韧性(40.57 MJ/m3),约99%的紫外线阻隔性,疏水性,防潮性和热稳定性。这种地膜在40天内降解了70%,远远超过传统地膜(CM)。其固有的生物降解性为替代农用塑料提供了巨大的潜力,推动了可持续材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lignin-Based Biodegradable Mulch Film with Zn2+ Coordination Networks for Sustainable Agriculture.

The environmental persistence of conventional plastic mulch films imposes substantial ecological burdens. With rising demands for sustainable agriculture, biodegradable alternatives attract growing interest. However, existing biobased films often face trade-offs between mechanical robustness, environmental adaptability, and functional versatility. In this study, we fabricated a mechanically enhanced multifunctional lignin-based composite mulch by blending modified sulfate lignin (SKL), poly(vinyl alcohol) (PVA), nanocellulose (CNF), and ZnCl2. The work elucidated the synergistic interfacial mechanism underlying its superior properties. Zn2+ coordination with lignin sulfonic acid groups and SKL/PVA/CNF hydrogen bonding form a hierarchical network. This yields exceptional toughness (40.57 MJ/m3), ∼99% UV-blocking, hydrophobicity, moisture barrier, and thermal stability. The film degraded 70% in 40 days─far exceeding conventional mulch (CM). Its inherent biodegradability offers significant potential to replace agricultural plastics, advancing sustainable materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信