Materials Chemistry Frontiers最新文献

筛选
英文 中文
New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex† 新型加热器@发光温度计纳米物体:负载有β-二酮酸 Tb3+/Eu3+ 复合物的普鲁士蓝芯@二氧化硅壳†。
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-20 DOI: 10.1039/D4QM00668B
Aurore Larquey, Houda Bellahsene, Gautier Félix, Mickaël Beaudhuin, Tristan Pelluau, Basile Bouvet, Yannick Guari, Saad Sene and Joulia Larionova
{"title":"New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex†","authors":"Aurore Larquey, Houda Bellahsene, Gautier Félix, Mickaël Beaudhuin, Tristan Pelluau, Basile Bouvet, Yannick Guari, Saad Sene and Joulia Larionova","doi":"10.1039/D4QM00668B","DOIUrl":"https://doi.org/10.1039/D4QM00668B","url":null,"abstract":"<p >We report on the synthesis and investigation of new multifunctional Prussian blue (PB) nanoparticles coated by a mesoporous silica shell and loaded with a luminescent [(Tb/Eu)<small><sub>9</sub></small>(acac)<small><sub>16</sub></small>(μ<small><sub>3</sub></small>-OH)<small><sub>8</sub></small>(μ<small><sub>4</sub></small>-O)(μ<small><sub>4</sub></small>-OH)]·H<small><sub>2</sub></small>O complex. These multifunctional nano-objects work as efficient photothermal nano-heaters able to provide macroscopic temperature rises remotely triggered by light irradiation at 808 nm (Δ<em>T</em> = 20.4 °C under irradiation for 3 min with a laser power of 1.83 W cm<small><sup>−2</sup></small>). Their specific heat capacity, the primary parameter influencing the heating properties of nanoparticles, was determined by using the photothermal properties and the measured heat capacity of PB nanoparticles, yielding a value of 1.13 ± 0.03 J g<small><sup>−1</sup></small> K<small><sup>−1</sup></small>. This moderate value indicates that once heated, the nanoparticles can retain heat effectively, making them suitable for applications requiring sustained and controlled thermal effects. On the other hand, these multifunctional nanoparticles exhibit the characteristic temperature-dependent luminescence of Tb<small><sup>3+</sup></small> and Eu<small><sup>3+</sup></small> with improved Tb<small><sup>3+</sup></small>-to-Eu<small><sup>3+</sup></small> energy transfer, making them efficient as luminescent ratiometric thermometers. These nanothermometers operate in the 20–80 °C range exhibiting a maximal relative thermal sensitivity of 0.75% °C<small><sup>−1</sup></small> at 20 °C.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 131-146"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers 质子交换膜水电解槽阳极催化剂层的多尺度工程设计
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-19 DOI: 10.1039/D4QM00842A
Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou
{"title":"Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers","authors":"Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou","doi":"10.1039/D4QM00842A","DOIUrl":"https://doi.org/10.1039/D4QM00842A","url":null,"abstract":"<p >Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 30-44"},"PeriodicalIF":6.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermochemical synthesis of Mo nano/microspheres: growth kinetics, electrocatalytic hydrogen evolution, and DFT insights† 钼纳米/微球的热化学合成:生长动力学、电催化氢进化和 DFT 见解†。
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-15 DOI: 10.1039/D4QM00814F
Hayk Nersisyan, Junmo Jeong, Hoyoung Suh and Jong Hyeon Lee
{"title":"Thermochemical synthesis of Mo nano/microspheres: growth kinetics, electrocatalytic hydrogen evolution, and DFT insights†","authors":"Hayk Nersisyan, Junmo Jeong, Hoyoung Suh and Jong Hyeon Lee","doi":"10.1039/D4QM00814F","DOIUrl":"https://doi.org/10.1039/D4QM00814F","url":null,"abstract":"<p >This study presents an efficient low-temperature process for synthesizing Mo nano- and microspheres for various applications. The synthesis process involves the preparation of a MoO<small><sub>3</sub></small> + <em>k</em>Zn mixture with an excess of zinc (Zn &gt; 3) and processing to temperatures between 500 and 850 °C in an argon atmosphere. The growth kinetics of Mo particles are determined by analyzing the relationship between sphere diameter and processing time. Molybdenum nano- and microspheres are applied as electrocatalysts for the hydrogen evolution reaction (HER) and high electrocatalytic activity, including low overpotential (170–206 mV) and Tafel slope (40–50 mV dec<small><sup>−1</sup></small>) are recorded in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small> electrolyte. DFT calculation provides adsorption Gibbs free energy for (001), (110), and (211) surfaces of Mo and charge density plots on pure Mo and Mo–O surfaces. As for vacuum-distilled Zn, its microstructure is also studied for its reuse and to assess its potential for additive manufacturing.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 147-160"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the active sites for titanium species in zeolites: coordination structure, synthetic strategies and activity 沸石中钛物种活性位点综述:配位结构、合成策略和活性
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-14 DOI: 10.1039/D4QM00759J
Yihao Wang, Kaiwei Wang, Fumin Wang, Yi Zhai, Changhao Bing, Xiaolu Fan, Qi Shen and Xubin Zhang
{"title":"A review on the active sites for titanium species in zeolites: coordination structure, synthetic strategies and activity","authors":"Yihao Wang, Kaiwei Wang, Fumin Wang, Yi Zhai, Changhao Bing, Xiaolu Fan, Qi Shen and Xubin Zhang","doi":"10.1039/D4QM00759J","DOIUrl":"https://doi.org/10.1039/D4QM00759J","url":null,"abstract":"<p >Titanium species in titanosilicate zeolites exist in three forms: framework titanium species, framework-associated titanium species and anatase TiO<small><sub>2</sub></small>. They dominate the catalytic properties. Generally, the framework titanium species are considered as the active centers for catalytic reactions. However, the latest research has unveiled that additional titanium species within the framework, such as penta-coordinated and hexa-coordinate titanium species, can also exert their influence on catalytic processes. The catalytic activities of various titanium species, including penta- and hexa-coordinated titanium, exhibit superiority over traditional tetra-coordinated framework titanium species in some reactions. The urgent necessity lies in establishing a comprehensive understanding of the formation principles of various titanium species, characterization, and investigating their catalytic properties across diverse reactions. This review provides a comprehensive overview of contemporary advances in titanosilicate zeolites. The regulatory strategies, detection methods, and catalytic properties of titanium species are comprehensively summarized. Furthermore, a universal analysis is conducted on the mechanism of titanium species in the hydrogen peroxide catalytic system, offering valuable insights into both catalytic mechanism and precise regulation of microenvironmental conditions and spatial distribution of titanium species.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 8-29"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Photodynamic antitumor activity of aggregation-induced emission luminogens as chemosensitizers for paclitaxel by concurrent induction of apoptosis and autophagic cell death
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-11 DOI: 10.1039/D4QM90073A
Jia Wang, Wenling Zhang, Ting Wu, Haisi Wu, Yuan Zhang, Siwan Wang, You Ji, Hui Jiang, Ziting Zhang, Chunming Tang, Qiyun Tang, Xiaolin Li and Huae Xu
{"title":"Correction: Photodynamic antitumor activity of aggregation-induced emission luminogens as chemosensitizers for paclitaxel by concurrent induction of apoptosis and autophagic cell death","authors":"Jia Wang, Wenling Zhang, Ting Wu, Haisi Wu, Yuan Zhang, Siwan Wang, You Ji, Hui Jiang, Ziting Zhang, Chunming Tang, Qiyun Tang, Xiaolin Li and Huae Xu","doi":"10.1039/D4QM90073A","DOIUrl":"https://doi.org/10.1039/D4QM90073A","url":null,"abstract":"<p >Correction for ‘Photodynamic antitumor activity of aggregation-induced emission luminogens as chemosensitizers for paclitaxel by concurrent induction of apoptosis and autophagic cell death’ by Jia Wang <em>et al.</em>, <em>Mater. Chem. Front.</em>, 2021, <strong>5</strong>, 3448–3457, https://doi.org/10.1039/D1QM00089F.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4114-4115"},"PeriodicalIF":6.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm90073a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiro-[4,5]-cyclohexadiene-8-one polymers: photoactivated crosslinking and switch-on fluorescence for lithography† 螺-[4,5]-环己二烯-8-酮聚合物:用于光刻技术的光活化交联和开关荧光†。
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-08 DOI: 10.1039/D4QM00688G
Yi Yuan, Mi Chao, Yunyi Shang, Yujia Gao, Guangle Niu, Wanggang Fang, Liqing He and Hui Wang
{"title":"Spiro-[4,5]-cyclohexadiene-8-one polymers: photoactivated crosslinking and switch-on fluorescence for lithography†","authors":"Yi Yuan, Mi Chao, Yunyi Shang, Yujia Gao, Guangle Niu, Wanggang Fang, Liqing He and Hui Wang","doi":"10.1039/D4QM00688G","DOIUrl":"https://doi.org/10.1039/D4QM00688G","url":null,"abstract":"<p >Developing multiple photoresponsive polymers is crucial for creating versatile intelligent materials; however, it poses a significant challenge due to the limited availability of photoactivated moieties. Herein, we present a novel series of dual photoresponsive spiro-[4,5]-cyclohexadiene-8-one polymers exhibiting photoactivated crosslinking and switch-on fluorescence behaviors. These polymers were synthesized through a robust palladium-catalyzed [2+2+1] cycloaddition polymerization reaction of 4-phenol diazonium tetrafluoroborate and diynes. Notably, the single photoreactive spiro-[4,5]-cyclohexadiene-8-one moiety endowed dual photoresponse features to these polymers. Upon UV irradiation, the cyclohexadienone moieties underwent a 2π+2π photocycloaddition reaction to form an insoluble crosslinked polymer network. Concurrently, the photoactivated fluorescence phenomenon of the crosslinked polymers was also observed. To our knowledge, these polymers represent the first examples of merging photocrosslinking and fluorescence turn-on properties into one single functional group. By harnessing the unique photocrosslinking and photoactivated fluorescence properties, we successfully imprinted 2D and 3D photopatterns for lithographic applications. These intriguing results provide an alternative design strategy of multiple photoresponsive polymers for fluorescent labelling and 2D/3D optical security.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 122-130"},"PeriodicalIF":6.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors 基于酞菁的自组装纳米光敏剂在缺氧肿瘤光动力疗法中的应用
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-05 DOI: 10.1039/D4QM00602J
Lin He and Ding Ma
{"title":"Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors","authors":"Lin He and Ding Ma","doi":"10.1039/D4QM00602J","DOIUrl":"https://doi.org/10.1039/D4QM00602J","url":null,"abstract":"<p >Photodynamic therapy (PDT) is a well-established minimally invasive cancer treatment, yet its effectiveness in treating hypoxic tumors is limited due to oxygen scarcity, hindering the production of reactive oxygen species (ROS). Phthalocyanines, notable for their remarkable optoelectronic attributes and structural flexibility, have emerged as a class of photosensitizers with potential to enhance PDT. This review highlights innovations in the development of self-assembled phthalocyanine-based nano-photosensitizers, underscoring their potential to mitigate the obstacles posed by hypoxia in PDT. It details advancements in self-assembly methodologies and their applications to augment the therapeutic impact of PDT in hypoxic tumors, encompassing oxygen supply augmentation, metabolic pathway modulation, development of phthalocyanine-based nano-photosensitizers for photothermal therapy (PTT), type I PDT photosensitizers and combination therapy. It concludes with an overview of the current challenges and future prospects of phthalocyanine-based nano-photosensitizers in PDT. By reviewing recent progress, this paper aspires to offer pioneering insights into the conception of novel nano-photosensitizers, engineered to counteract hypoxia and circumvent the intrinsic limitations of PDT.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3877-3897"},"PeriodicalIF":6.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible keratin hydrogels obtained by a reductive method† 通过还原法获得柔性角蛋白水凝胶†。
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-11-01 DOI: 10.1039/D4QM00449C
María Luz Peralta Ramos, Patricia Rivas-Rojas, Hugo Ascolani, Margherita Cavallo, Francesca Bonino, Roberto Fernandez de Luis, María Ximena Guerbi, Flabia Michelini, Celina Bernal, Juan Manuel Lázaro-Martínez and Guillermo Copello
{"title":"Flexible keratin hydrogels obtained by a reductive method†","authors":"María Luz Peralta Ramos, Patricia Rivas-Rojas, Hugo Ascolani, Margherita Cavallo, Francesca Bonino, Roberto Fernandez de Luis, María Ximena Guerbi, Flabia Michelini, Celina Bernal, Juan Manuel Lázaro-Martínez and Guillermo Copello","doi":"10.1039/D4QM00449C","DOIUrl":"https://doi.org/10.1039/D4QM00449C","url":null,"abstract":"<p >Keratin derived materials are still underexploited due to the little understanding of their chemical versatility. Whereas many protein based materials achieve flexibility by crosslinking or interpenetrating with synthetic polymers, we assessed the effect of reductive treatments on aqueous media. Hydrazine sulphate (HZN) and ascorbic acid reduction were compared. The reduced material is bendable and stretchable, whereas the original keratin hydrogel is brittle. This would imply a technological leap in protein materials. Both reductive treatments would achieve reduced keratins by the reduction of oxidised cysteines which leads to a change in the polypeptide chain interaction by a decrease in electrostatic repulsion and swelling. Moreover, in contrast with the ascorbic acid treatment, when higher levels of HZN are employed, the effect of residual sulphates lead to the interchain closeness of the more mobile domains acting as physical crosslinkers, leading to compressed structures with narrower pores. This suggests that the flexible properties of the hydrogel could be related not only to the reduction of the hydrogel but also to the interaction of the sulphate ions with the keratin structure. As a result, the reduction of sulfinic and sulfenic groups to thiol, along with the incorporation of sulphate ions into the structure, impart the material with an elongation at break ranging between 10–25%, nano-scale pores approximately 2 nm in size, swelling capacity of around 50%, all while preserving the biocompatibility observed in the original material tested across two cell lines comprising fibroblasts and keratinocytes.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 74-84"},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MnOx embedded in 3D foam-like polymer composite for high-performance flexible supercapacitors† 嵌入三维泡沫状聚合物复合材料中的氧化锰用于高性能柔性超级电容器†。
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-10-31 DOI: 10.1039/D4QM00609G
Xiaojuan Shen, Shouyan Sun, Pengwei Liu and ManLin Wei
{"title":"MnOx embedded in 3D foam-like polymer composite for high-performance flexible supercapacitors†","authors":"Xiaojuan Shen, Shouyan Sun, Pengwei Liu and ManLin Wei","doi":"10.1039/D4QM00609G","DOIUrl":"https://doi.org/10.1039/D4QM00609G","url":null,"abstract":"<p >3D foam-like composites with a large specific surface area and a well-distributed interconnected pore structure have been recognized as promising materials for energy storage devices. In this study, a novel composite electrode (PEUS-Mn-PS) consisting of a 3D foam-like PEUS matrix embedded with manganese dioxide (MnO<small><sub><em>x</em></sub></small>) was prepared using a simple and facile method. The PEUS matrix was fabricated by incorporating poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and water polyurethane (PU), where a sacrificial template of poly(3,4-ethylenedioxythiophene) (PEDOT)-decorated Ni foam (NF) was utilized. Specifically, surface modification of NF with a thin layer of PEDOT resulted in the formation of a more regular 3D interconnected scaffold of PEU with more hydrophilic surface, facilitating homogeneous formation of the electrode materials and electrolyte infiltration. Benefiting from the high conductivity of PEDOT:PSS, large surface area provided by PEU, and high capacity offered by MnO<small><sub><em>x</em></sub></small>, the resulting flexible PEUS-Mn-PS electrode exhibited an exceptional areal specific capacitance of 681.7 mF cm<small><sup>−2</sup></small> (∼486.9 F g<small><sup>−1</sup></small>) at 1 mF cm<small><sup>−2</sup></small>, much larger than 358.9 mF cm<small><sup>−2</sup></small> of the PUS-Mn-PS electrode prepared without PEDOT modification and 318.7 mF cm<small><sup>−2</sup></small> of the NF-Mn electrode synthesized through direct electrodeposition of MnO<small><sub><em>x</em></sub></small> on NF. The resulting PEUS-Mn-PS electrode allowed the assembled solid-state symmetric flexible SC to achieve an impressive energy density of 0.043 mW h cm<small><sup>−2</sup></small> at a power density of 2.24 mW cm<small><sup>−2</sup></small>, while maintaining excellent electrochemical performance even under various bending angles. This work provides a new approach to designing high-performance flexible SC electrode materials using a simple, cost-effective, and environmentally friendly method.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 109-121"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-conventional luminescent π-organogels with a rigid chemical structure
IF 6 2区 材料科学
Materials Chemistry Frontiers Pub Date : 2024-10-31 DOI: 10.1039/D4QM00811A
Shuzhan Chen, Dan Luo, Peng Geng, Haichuang Lan and Shuzhang Xiao
{"title":"Non-conventional luminescent π-organogels with a rigid chemical structure","authors":"Shuzhan Chen, Dan Luo, Peng Geng, Haichuang Lan and Shuzhang Xiao","doi":"10.1039/D4QM00811A","DOIUrl":"https://doi.org/10.1039/D4QM00811A","url":null,"abstract":"<p >Low-molecular-weight organogels (LMWGs) with π-conjugated structures typically exhibit excellent photoluminescent properties and have significant potential in optoelectronic materials, sensing, and detection applications due to their large specific surface areas and high sensitivity. Conventional organogelators usually contain multiple amide bonds and long flexible chains to facilitate gelation. In contrast, non-conventional π-conjugated organogelators lack flexible chains, offering enhanced atomic economy. Furthermore, the suppression of non-radiative decay caused by the motion of flexible units could lead to higher emission efficiency. Notably, recent research has indicated that rigid chemical structures are essential for achieving ultra-long room-temperature phosphorescence (RTP) in organogels. This review highlights the structures, photoluminescent properties, and applications of non-conventional LMWGs, and discusses future perspectives and challenges in this emerging field.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4029-4048"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信