Yue Li, Jingjing Zhang, Yile Lin, Piracha Sanwal, Lulu Zhou, Gao Li and Yongdong Chen
{"title":"Effects of metal doping on the methanol deep oxidation activity of the Pd/CeO2 monolithic catalyst†","authors":"Yue Li, Jingjing Zhang, Yile Lin, Piracha Sanwal, Lulu Zhou, Gao Li and Yongdong Chen","doi":"10.1039/D4QM00756E","DOIUrl":"https://doi.org/10.1039/D4QM00756E","url":null,"abstract":"<p >Methanol fuel can be used as a clean alternative to conventional gasoline. However, vehicles using methanol fuel typically exhibit low exhaust temperatures during the cold start and idle phases, which may result in the emission of unburned methanol vapor. Herein, a series of CeO<small><sub>2</sub></small>-based solid solutions doped with different metal ions (CeM, M = Mg, La, Bi, Zr) are synthesized by a hydrothermal synthesis method, and supported Pd/CeM catalysts with regular interfacial structures are prepared by a special assembly method for the low-temperature deep oxidation of methanol. The results of XRD, N<small><sub>2</sub></small> adsorption/desorption, Raman spectroscopy, XPS and H<small><sub>2</sub></small>-TPR show that the crystal structure, specific surface area, defect concentration, surface oxygen vacancy content, high-valence Pd<small><sup><em>δ</em>+</sup></small> (<em>δ</em> > 2) species content and redox performance of the Pd/CeM catalyst are closely related to the type of doped metal ions. The catalytic performance results show that the Pd/CeLa catalyst exhibits the best low-temperature methanol oxidation activity, with a light-off temperature (<em>T</em><small><sub>50</sub></small>) of 118 °C and full conversion temperature (<em>T</em><small><sub>90</sub></small>) of 155 °C, which is at a high level under the same conditions reported in the literature. This is mainly attributed to its high defect concentration, high oxygen vacancy and more hypervalent Pd<small><sup><em>δ</em>+</sup></small> (<em>δ</em> > 2) species content as well as excellent low-temperature reduction performance. The results of this study demonstrate the promise of the Pd/CeLa catalyst for methanol oxidation and may offer guidelines for designing efficient catalysts for purification of methanol fuel from vehicle exhaust.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 280-287"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Zuo, Zhenhang Xu, Jun Qian, Gongzhen Cheng and Pingping Zhao
{"title":"Reconfiguration and activation induced by characteristic migration of transition metal ions between interfaces of high-entropy oxygen evolution catalysts†","authors":"Wei Zuo, Zhenhang Xu, Jun Qian, Gongzhen Cheng and Pingping Zhao","doi":"10.1039/D4QM00772G","DOIUrl":"https://doi.org/10.1039/D4QM00772G","url":null,"abstract":"<p >The tremendous potential of high-entropy alloys (HEA) in the electrocatalysis of the oxygen evolution reaction (OER) is well known, but many issues pertaining to building more reliable HEA systems to maximize its synergistic advantages and explaining their complex electrochemical interface behavior need to be discussed. Herein, a convenient composite metal–organic framework (MOF) co-pyrolysis method is designed to reconstruct the precursor in a high-temperature inert atmosphere and prepare a core–shell structure nitrogen-containing carbon nanotube-coated six-metal alloy (FeCoNiVCrZn HEA) as an excellent alkaline medium OER catalyst. It can achieve a working current density of 10 mA cm<small><sup>−2</sup></small> at 249 mV overpotential, and the current fluctuation range is less than 3.12% after constant voltage operation for an extended time in 1 M KOH electrolyte. Its electrocatalytic activity and stability surpass those of the same type of alloy catalyst and commercial IrO<small><sub>2</sub></small>/C catalyst. We tracked the trend of the concentration and chemical state of metal ions between two phases during the electrochemical process and found that the interface reconfiguration of the high-entropy alloy is regulated by the characteristic transition metal migration behavior. On this basis, through density functional theory (DFT) calculation, we further explored the alkaline medium surface metal dissolution and surface reconfiguration behavior and verified that the active MOOH (M = Fe, Co and Ni) phase plays a key role in the reaction steps for the adsorption of the oxygen species. This work provides a unique perspective for the study of HEA in OER structure optimization and interface behavior and shows a new prospect for the development of advanced OER electrocatalysts.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 325-338"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paundra Rizky Pratama, Azzah Dyah Pramata, Yuki Suenari, Jonas Karl Christopher N. Agutaya, Yu Nagata, Takeshi Shinkai, Yusuke Inomata, Mas Irfan Purbawanto Hidayat, Biplab Manna, Yuji Akaishi and Tetsuya Kida
{"title":"Lattice engineering for enhancing the stability of CsPbI3/CsxFA1–xPbI3 quantum dots synthesized via a direct arrangement†","authors":"Paundra Rizky Pratama, Azzah Dyah Pramata, Yuki Suenari, Jonas Karl Christopher N. Agutaya, Yu Nagata, Takeshi Shinkai, Yusuke Inomata, Mas Irfan Purbawanto Hidayat, Biplab Manna, Yuji Akaishi and Tetsuya Kida","doi":"10.1039/D4QM00885E","DOIUrl":"https://doi.org/10.1039/D4QM00885E","url":null,"abstract":"<p >The inherent structural instability of red-emitting cesium lead iodide (CsPbI<small><sub>3</sub></small>) perovskite quantum dots (QDs) poses a significant hurdle for their integration into commercial optoelectronic devices. In this study, we improved the stability of the cubic CsPbI<small><sub>3</sub></small> QDs by coating them with a Cs<small><sub><em>x</em></sub></small>FA<small><sub>1−<em>x</em></sub></small>PbI<small><sub>3</sub></small> (FA = formamidinium, <em>x</em> = 0.25 or 0.75) cluster <em>via</em> a facile direct arrangement synthesis method. The resulting CsPbI<small><sub>3</sub></small>/Cs<small><sub><em>x</em></sub></small>FA<small><sub>1−<em>x</em></sub></small>PbI<small><sub>3</sub></small> exhibited visible luminescence between 600 and 650 nm, a full-width half maximum of 38 nm, and a high photoluminescence quantum yield of 86.66%. Unlike in the case of bare CsPbI<small><sub>3</sub></small>, no discernable photoemission peak shift was observed for CsPbI<small><sub>3</sub></small>/Cs<small><sub>0.25</sub></small>FA<small><sub>0.75</sub></small>PbI<small><sub>3</sub></small> in particular at temperatures of up to 373 K and under UV illumination. Moreover, a more sustained luminescence of up to 25 min in the polar solvent was observed for CsPbI<small><sub>3</sub></small>/Cs<small><sub>0.25</sub></small>FA<small><sub>0.75</sub></small>PbI<small><sub>3</sub></small> compared to CsPbI<small><sub>3</sub></small> in less than 5 min. These resistances to thermal stress and degradation in polar solvents were attributed to the passivation of the CsPbI<small><sub>3</sub></small> particles by the pseudo-orthorhombic Cs<small><sub><em>x</em></sub></small>FA<small><sub>1−<em>x</em></sub></small>PbI<small><sub>3</sub></small> cluster. DFT calculations revealed that the addition of FA substantially changes the morphology of CsPbI<small><sub>3</sub></small>, but FA itself does not contribute significantly to the electronic transitions within the crystal. Therefore, the Cs<small><sub><em>x</em></sub></small>FA<small><sub>1−<em>x</em></sub></small>PbI<small><sub>3</sub></small> cluster on the surface of CsPbI<small><sub>3</sub></small> promoted their structural stability without any significant changes in its desired optical properties. These results offer unique optical characteristics while boosting the structural robustness of CsPbI<small><sub>3</sub></small> QDs by surface modification, which potentially could be used for optoelectronic devices.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 288-298"},"PeriodicalIF":6.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou
{"title":"Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers","authors":"Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou","doi":"10.1039/D4QM00842A","DOIUrl":"https://doi.org/10.1039/D4QM00842A","url":null,"abstract":"<p >Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 30-44"},"PeriodicalIF":6.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hayk Nersisyan, Junmo Jeong, Hoyoung Suh and Jong Hyeon Lee
{"title":"Thermochemical synthesis of Mo nano/microspheres: growth kinetics, electrocatalytic hydrogen evolution, and DFT insights†","authors":"Hayk Nersisyan, Junmo Jeong, Hoyoung Suh and Jong Hyeon Lee","doi":"10.1039/D4QM00814F","DOIUrl":"https://doi.org/10.1039/D4QM00814F","url":null,"abstract":"<p >This study presents an efficient low-temperature process for synthesizing Mo nano- and microspheres for various applications. The synthesis process involves the preparation of a MoO<small><sub>3</sub></small> + <em>k</em>Zn mixture with an excess of zinc (Zn > 3) and processing to temperatures between 500 and 850 °C in an argon atmosphere. The growth kinetics of Mo particles are determined by analyzing the relationship between sphere diameter and processing time. Molybdenum nano- and microspheres are applied as electrocatalysts for the hydrogen evolution reaction (HER) and high electrocatalytic activity, including low overpotential (170–206 mV) and Tafel slope (40–50 mV dec<small><sup>−1</sup></small>) are recorded in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small> electrolyte. DFT calculation provides adsorption Gibbs free energy for (001), (110), and (211) surfaces of Mo and charge density plots on pure Mo and Mo–O surfaces. As for vacuum-distilled Zn, its microstructure is also studied for its reuse and to assess its potential for additive manufacturing.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 147-160"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihao Wang, Kaiwei Wang, Fumin Wang, Yi Zhai, Changhao Bing, Xiaolu Fan, Qi Shen and Xubin Zhang
{"title":"A review on the active sites for titanium species in zeolites: coordination structure, synthetic strategies and activity","authors":"Yihao Wang, Kaiwei Wang, Fumin Wang, Yi Zhai, Changhao Bing, Xiaolu Fan, Qi Shen and Xubin Zhang","doi":"10.1039/D4QM00759J","DOIUrl":"https://doi.org/10.1039/D4QM00759J","url":null,"abstract":"<p >Titanium species in titanosilicate zeolites exist in three forms: framework titanium species, framework-associated titanium species and anatase TiO<small><sub>2</sub></small>. They dominate the catalytic properties. Generally, the framework titanium species are considered as the active centers for catalytic reactions. However, the latest research has unveiled that additional titanium species within the framework, such as penta-coordinated and hexa-coordinate titanium species, can also exert their influence on catalytic processes. The catalytic activities of various titanium species, including penta- and hexa-coordinated titanium, exhibit superiority over traditional tetra-coordinated framework titanium species in some reactions. The urgent necessity lies in establishing a comprehensive understanding of the formation principles of various titanium species, characterization, and investigating their catalytic properties across diverse reactions. This review provides a comprehensive overview of contemporary advances in titanosilicate zeolites. The regulatory strategies, detection methods, and catalytic properties of titanium species are comprehensively summarized. Furthermore, a universal analysis is conducted on the mechanism of titanium species in the hydrogen peroxide catalytic system, offering valuable insights into both catalytic mechanism and precise regulation of microenvironmental conditions and spatial distribution of titanium species.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 8-29"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dawn E. Barry, Oxana Kotova, Niamh A. O’Shea, Shauna R. Donohoe, Aramballi J. Savyasachi and Thorfinnur Gunnlaugsson
{"title":"Lanthanide luminescent di-metallic triple-stranded helicates formed from bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (tzpa) ligands and their higher order self-assemblies†","authors":"Dawn E. Barry, Oxana Kotova, Niamh A. O’Shea, Shauna R. Donohoe, Aramballi J. Savyasachi and Thorfinnur Gunnlaugsson","doi":"10.1039/D4QM00816B","DOIUrl":"https://doi.org/10.1039/D4QM00816B","url":null,"abstract":"<p >The bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (<strong>tzpa</strong>) ligands <strong>1</strong> and <strong>2</strong> were used in the formation of the luminescent di-metallic Tb(<small>III</small>) triple stranded helicates <strong>3</strong> and <strong>4</strong> (L<small><sub>3</sub></small>Tb<small><sub>2</sub></small>; L = 1 or 2). Both <strong>3</strong> and <strong>4</strong> were formed in high yield under either kinetic or thermodynamic conditions and their binding constant values were evaluated. The photophysical properties of the assemblies were analysed in the solution and solid state. The morphology of the ligands <em>vs<small>.</small></em> the Tb(<small>III</small>) assemblies were significantly different as detected by SEM.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 258-270"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Wang, Wenling Zhang, Ting Wu, Haisi Wu, Yuan Zhang, Siwan Wang, You Ji, Hui Jiang, Ziting Zhang, Chunming Tang, Qiyun Tang, Xiaolin Li and Huae Xu
{"title":"Correction: Photodynamic antitumor activity of aggregation-induced emission luminogens as chemosensitizers for paclitaxel by concurrent induction of apoptosis and autophagic cell death","authors":"Jia Wang, Wenling Zhang, Ting Wu, Haisi Wu, Yuan Zhang, Siwan Wang, You Ji, Hui Jiang, Ziting Zhang, Chunming Tang, Qiyun Tang, Xiaolin Li and Huae Xu","doi":"10.1039/D4QM90073A","DOIUrl":"https://doi.org/10.1039/D4QM90073A","url":null,"abstract":"<p >Correction for ‘Photodynamic antitumor activity of aggregation-induced emission luminogens as chemosensitizers for paclitaxel by concurrent induction of apoptosis and autophagic cell death’ by Jia Wang <em>et al.</em>, <em>Mater. Chem. Front.</em>, 2021, <strong>5</strong>, 3448–3457, https://doi.org/10.1039/D1QM00089F.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4114-4115"},"PeriodicalIF":6.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm90073a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Yuan, Mi Chao, Yunyi Shang, Yujia Gao, Guangle Niu, Wanggang Fang, Liqing He and Hui Wang
{"title":"Spiro-[4,5]-cyclohexadiene-8-one polymers: photoactivated crosslinking and switch-on fluorescence for lithography†","authors":"Yi Yuan, Mi Chao, Yunyi Shang, Yujia Gao, Guangle Niu, Wanggang Fang, Liqing He and Hui Wang","doi":"10.1039/D4QM00688G","DOIUrl":"https://doi.org/10.1039/D4QM00688G","url":null,"abstract":"<p >Developing multiple photoresponsive polymers is crucial for creating versatile intelligent materials; however, it poses a significant challenge due to the limited availability of photoactivated moieties. Herein, we present a novel series of dual photoresponsive spiro-[4,5]-cyclohexadiene-8-one polymers exhibiting photoactivated crosslinking and switch-on fluorescence behaviors. These polymers were synthesized through a robust palladium-catalyzed [2+2+1] cycloaddition polymerization reaction of 4-phenol diazonium tetrafluoroborate and diynes. Notably, the single photoreactive spiro-[4,5]-cyclohexadiene-8-one moiety endowed dual photoresponse features to these polymers. Upon UV irradiation, the cyclohexadienone moieties underwent a 2π+2π photocycloaddition reaction to form an insoluble crosslinked polymer network. Concurrently, the photoactivated fluorescence phenomenon of the crosslinked polymers was also observed. To our knowledge, these polymers represent the first examples of merging photocrosslinking and fluorescence turn-on properties into one single functional group. By harnessing the unique photocrosslinking and photoactivated fluorescence properties, we successfully imprinted 2D and 3D photopatterns for lithographic applications. These intriguing results provide an alternative design strategy of multiple photoresponsive polymers for fluorescent labelling and 2D/3D optical security.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 122-130"},"PeriodicalIF":6.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silin Huang, Yu-Ting He, Xiao-Jing Zhang, Xue-Qiang Wang and Qiang Guo
{"title":"Development of polymeric aptamer probes for in vivo continuous precision cancer targeting†","authors":"Silin Huang, Yu-Ting He, Xiao-Jing Zhang, Xue-Qiang Wang and Qiang Guo","doi":"10.1039/D4QM00731J","DOIUrl":"https://doi.org/10.1039/D4QM00731J","url":null,"abstract":"<p >Aptamers, despite their specific targeting capabilities and widespread applications in various research domains, face a significant hurdle in the biomedical research area due to their rapid degradation by nucleases. To address this challenge, this study introduces an innovative development in the form of polymeric aptamer probes (PAPs) designed to enhance <em>in vivo</em> cancer tissue recognition and targeting. This study outlines the synthesis of PAPs, which leverage the strain-promoted alkyne–azide cycloaddition (SPAAC) strategy to construct these nanoprobes. By sequentially linking individual DBCO or N<small><sub>3</sub></small> group-decorated AS1411 aptamers that target nucleolin overexpressed on tumor cells, the resulting PAPs exhibit significantly enhanced stability against enzymatic degradation and superior binding affinity and internalization ability compared to single aptamers across a range of cancer cell lines. <em>In vivo</em> experiments have further validated the superior tumor targeting and retention capabilities of the prepared PAPs, thus underscoring their potential for precise cancer diagnosis and therapy.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 253-257"},"PeriodicalIF":6.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}