3D打印基于c3n4的结构,用于光,电化学和压电应用†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alessio Massaro, Kiem Giap Nguyen, David Vogelsang Suárez, Artem Glukharev, Chiara Ingrosso, Marinella Striccoli, Ahmet Can Kirlioglu, Suela Kellici and Vesna Middelkoop
{"title":"3D打印基于c3n4的结构,用于光,电化学和压电应用†","authors":"Alessio Massaro, Kiem Giap Nguyen, David Vogelsang Suárez, Artem Glukharev, Chiara Ingrosso, Marinella Striccoli, Ahmet Can Kirlioglu, Suela Kellici and Vesna Middelkoop","doi":"10.1039/D5QM00290G","DOIUrl":null,"url":null,"abstract":"<p >In this study, we explored the use of two 3D printing techniques, direct ink writing (DIW) and digital light processing (DLP), as novel and flexible strategies to control the 3D geometry and morphology of functional materials. To demonstrate their potential, different types of carbon nitride (C<small><sub>3</sub></small>N<small><sub>4</sub></small>) were combined and successfully printed with various polymers, such as methylcellulose (MC) and polysulfone (PSF). C<small><sub>3</sub></small>N<small><sub>4</sub></small> is a metal-free photoactive material, which has recently gained significant interest due to its attractive optoelectronic properties. The 3D printed C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based composites were tested in typical potential applications for their photo-, piezo- and electrocatalytic activity. Tailored formulations and design strategies were devised for pollutant photo- and piezoelectric degradation as well as electrochemical sensing, showing the effect of the formulation on the performance of the 3D printed C<small><sub>3</sub></small>N<small><sub>4</sub></small> polymer composites. The performance evaluations revealed promising results, complemented by the stability of the 3D printed geometries in organic solvents commonly used in chemical syntheses. Specifically, the DIW g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/PSF formulation showed the highest overall pollutant removal (71%), followed by the DLP g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based formulations which showed high removal efficiencies (up to 63%) with a high level of piezoelectric degradation (up to 41%). In addition, Piezoresponse Force Microscopy (PFM) analysis of both the starting bulk g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> powder and DIW 3D printed bulk g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/MC composite revealed significant piezoelectric properties, broadening their potential applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 18","pages":" 2730-2743"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00290g?page=search","citationCount":"0","resultStr":"{\"title\":\"3D printed C3N4-based structures for photo-, electro-chemical and piezoelectric applications†\",\"authors\":\"Alessio Massaro, Kiem Giap Nguyen, David Vogelsang Suárez, Artem Glukharev, Chiara Ingrosso, Marinella Striccoli, Ahmet Can Kirlioglu, Suela Kellici and Vesna Middelkoop\",\"doi\":\"10.1039/D5QM00290G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we explored the use of two 3D printing techniques, direct ink writing (DIW) and digital light processing (DLP), as novel and flexible strategies to control the 3D geometry and morphology of functional materials. To demonstrate their potential, different types of carbon nitride (C<small><sub>3</sub></small>N<small><sub>4</sub></small>) were combined and successfully printed with various polymers, such as methylcellulose (MC) and polysulfone (PSF). C<small><sub>3</sub></small>N<small><sub>4</sub></small> is a metal-free photoactive material, which has recently gained significant interest due to its attractive optoelectronic properties. The 3D printed C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based composites were tested in typical potential applications for their photo-, piezo- and electrocatalytic activity. Tailored formulations and design strategies were devised for pollutant photo- and piezoelectric degradation as well as electrochemical sensing, showing the effect of the formulation on the performance of the 3D printed C<small><sub>3</sub></small>N<small><sub>4</sub></small> polymer composites. The performance evaluations revealed promising results, complemented by the stability of the 3D printed geometries in organic solvents commonly used in chemical syntheses. Specifically, the DIW g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/PSF formulation showed the highest overall pollutant removal (71%), followed by the DLP g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-based formulations which showed high removal efficiencies (up to 63%) with a high level of piezoelectric degradation (up to 41%). In addition, Piezoresponse Force Microscopy (PFM) analysis of both the starting bulk g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> powder and DIW 3D printed bulk g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/MC composite revealed significant piezoelectric properties, broadening their potential applications.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 18\",\"pages\":\" 2730-2743\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00290g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00290g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00290g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了两种3D打印技术的使用,直接墨水书写(DIW)和数字光处理(DLP),作为控制功能材料的三维几何和形态的新颖和灵活的策略。为了证明其潜力,将不同类型的氮化碳(C3N4)与各种聚合物(如甲基纤维素(MC)和聚砜(PSF))结合并成功打印。C3N4是一种无金属的光活性材料,近年来由于其吸引人的光电特性而引起了人们的极大兴趣。3D打印的c3n4基复合材料在典型的潜在应用中进行了光、压电和电催化活性测试。针对污染物的光、压电降解以及电化学传感设计了量身定制的配方和设计策略,展示了配方对3D打印C3N4聚合物复合材料性能的影响。性能评估显示出有希望的结果,并且3D打印几何形状在化学合成中常用的有机溶剂中的稳定性也得到了补充。具体而言,DIW g-C3N4/PSF配方显示出最高的总体污染物去除率(71%),其次是基于DLP g-C3N4的配方,具有高去除效率(高达63%)和高压电降解水平(高达41%)。此外,压电响应力显微镜(PFM)分析了起始块体g-C3N4粉末和DIW 3D打印块体g-C3N4/MC复合材料的显著压电性能,拓宽了它们的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D printed C3N4-based structures for photo-, electro-chemical and piezoelectric applications†

3D printed C3N4-based structures for photo-, electro-chemical and piezoelectric applications†

In this study, we explored the use of two 3D printing techniques, direct ink writing (DIW) and digital light processing (DLP), as novel and flexible strategies to control the 3D geometry and morphology of functional materials. To demonstrate their potential, different types of carbon nitride (C3N4) were combined and successfully printed with various polymers, such as methylcellulose (MC) and polysulfone (PSF). C3N4 is a metal-free photoactive material, which has recently gained significant interest due to its attractive optoelectronic properties. The 3D printed C3N4-based composites were tested in typical potential applications for their photo-, piezo- and electrocatalytic activity. Tailored formulations and design strategies were devised for pollutant photo- and piezoelectric degradation as well as electrochemical sensing, showing the effect of the formulation on the performance of the 3D printed C3N4 polymer composites. The performance evaluations revealed promising results, complemented by the stability of the 3D printed geometries in organic solvents commonly used in chemical syntheses. Specifically, the DIW g-C3N4/PSF formulation showed the highest overall pollutant removal (71%), followed by the DLP g-C3N4-based formulations which showed high removal efficiencies (up to 63%) with a high level of piezoelectric degradation (up to 41%). In addition, Piezoresponse Force Microscopy (PFM) analysis of both the starting bulk g-C3N4 powder and DIW 3D printed bulk g-C3N4/MC composite revealed significant piezoelectric properties, broadening their potential applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信