Jin Li, Wei Zhang, Xiujing Xing, Yaokang Lv, Renliang Lyu, Wei Xiong and Hao Li
{"title":"Influence of CeO2 support morphology on the structural and NO2−RR performance of CeO2@Au catalyst†","authors":"Jin Li, Wei Zhang, Xiujing Xing, Yaokang Lv, Renliang Lyu, Wei Xiong and Hao Li","doi":"10.1039/D4QM00798K","DOIUrl":"https://doi.org/10.1039/D4QM00798K","url":null,"abstract":"<p >Gold nanoparticles are extensively employed in the field of electrocatalytic nitrite reduction for ammonia synthesis, due to their exceptional conductivity and remarkable stability. However, the performance of a single metal is often limited and by combining different metals, the overall performance can be significantly improved to meet specific needs and application scenarios. The regulation of the interaction between loaded gold nanoparticles and metal oxide support materials represents an effective strategy for facilitating the reduction of nitrite to ammonia. In this work, we prepared three different structural morphologies of cerium dioxide (CeO<small><sub>2</sub></small>) – cubic (c-CeO<small><sub>2</sub></small>), rod-like (r-CeO<small><sub>2</sub></small>) and granular (p-CeO<small><sub>2</sub></small>), by modulating the hydrothermal temperature. The effect of the morphology of the CeO<small><sub>2</sub></small> carriers on the surface structure of the composite catalyst, CeO<small><sub>2</sub></small>@Au, was systematically studied and its performance of the electrocatalytic reduction of ammonia from nitrite was explored. It was found that c-CeO<small><sub>2</sub></small> loaded with Au nanoparticles possessed better electrocatalytic performance with an ammonia yield of 4007.9 μg h<small><sup>−1</sup></small> mg<small><sub>cat</sub></small><small><sup>−1</sup></small> and a Faraday efficiency of 91.2% compared to r-CeO<small><sub>2</sub></small> and p-CeO<small><sub>2</sub></small>. The results of the characterisation tests, conducted using scanning electron microscopy (SEM), elemental mapping analysis (EDS) and inductively coupled plasma (ICP), demonstrate that c-CeO<small><sub>2</sub></small> exhibits enhanced crystallinity, a reduced particle size and a more uniform dispersion. Therefore, c-CeO<small><sub>2</sub></small> is able to load more Au nanoparticles during the complexation process with Au, which in turn possesses more reactive active sites. In addition, the results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) showed that after the complexation of c-CeO<small><sub>2</sub></small> with Au, some of the lattice fringes of c-CeO<small><sub>2</sub></small> were distorted with defects leading to an increase in the content of oxygen vacancies, which greatly improved the active area of the catalyst. These physicochemical properties endow the c-CeO<small><sub>2</sub></small>@Au catalysts with excellent electrocatalytic nitrite-to-ammonia activity.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 223-233"},"PeriodicalIF":6.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assembled phthalocyanine-based nano-photosensitizers in photodynamic therapy for hypoxic tumors","authors":"Lin He and Ding Ma","doi":"10.1039/D4QM00602J","DOIUrl":"https://doi.org/10.1039/D4QM00602J","url":null,"abstract":"<p >Photodynamic therapy (PDT) is a well-established minimally invasive cancer treatment, yet its effectiveness in treating hypoxic tumors is limited due to oxygen scarcity, hindering the production of reactive oxygen species (ROS). Phthalocyanines, notable for their remarkable optoelectronic attributes and structural flexibility, have emerged as a class of photosensitizers with potential to enhance PDT. This review highlights innovations in the development of self-assembled phthalocyanine-based nano-photosensitizers, underscoring their potential to mitigate the obstacles posed by hypoxia in PDT. It details advancements in self-assembly methodologies and their applications to augment the therapeutic impact of PDT in hypoxic tumors, encompassing oxygen supply augmentation, metabolic pathway modulation, development of phthalocyanine-based nano-photosensitizers for photothermal therapy (PTT), type I PDT photosensitizers and combination therapy. It concludes with an overview of the current challenges and future prospects of phthalocyanine-based nano-photosensitizers in PDT. By reviewing recent progress, this paper aspires to offer pioneering insights into the conception of novel nano-photosensitizers, engineered to counteract hypoxia and circumvent the intrinsic limitations of PDT.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3877-3897"},"PeriodicalIF":6.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Luz Peralta Ramos, Patricia Rivas-Rojas, Hugo Ascolani, Margherita Cavallo, Francesca Bonino, Roberto Fernandez de Luis, María Ximena Guerbi, Flabia Michelini, Celina Bernal, Juan Manuel Lázaro-Martínez and Guillermo Copello
{"title":"Flexible keratin hydrogels obtained by a reductive method†","authors":"María Luz Peralta Ramos, Patricia Rivas-Rojas, Hugo Ascolani, Margherita Cavallo, Francesca Bonino, Roberto Fernandez de Luis, María Ximena Guerbi, Flabia Michelini, Celina Bernal, Juan Manuel Lázaro-Martínez and Guillermo Copello","doi":"10.1039/D4QM00449C","DOIUrl":"https://doi.org/10.1039/D4QM00449C","url":null,"abstract":"<p >Keratin derived materials are still underexploited due to the little understanding of their chemical versatility. Whereas many protein based materials achieve flexibility by crosslinking or interpenetrating with synthetic polymers, we assessed the effect of reductive treatments on aqueous media. Hydrazine sulphate (HZN) and ascorbic acid reduction were compared. The reduced material is bendable and stretchable, whereas the original keratin hydrogel is brittle. This would imply a technological leap in protein materials. Both reductive treatments would achieve reduced keratins by the reduction of oxidised cysteines which leads to a change in the polypeptide chain interaction by a decrease in electrostatic repulsion and swelling. Moreover, in contrast with the ascorbic acid treatment, when higher levels of HZN are employed, the effect of residual sulphates lead to the interchain closeness of the more mobile domains acting as physical crosslinkers, leading to compressed structures with narrower pores. This suggests that the flexible properties of the hydrogel could be related not only to the reduction of the hydrogel but also to the interaction of the sulphate ions with the keratin structure. As a result, the reduction of sulfinic and sulfenic groups to thiol, along with the incorporation of sulphate ions into the structure, impart the material with an elongation at break ranging between 10–25%, nano-scale pores approximately 2 nm in size, swelling capacity of around 50%, all while preserving the biocompatibility observed in the original material tested across two cell lines comprising fibroblasts and keratinocytes.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 74-84"},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojuan Shen, Shouyan Sun, Pengwei Liu and ManLin Wei
{"title":"MnOx embedded in 3D foam-like polymer composite for high-performance flexible supercapacitors†","authors":"Xiaojuan Shen, Shouyan Sun, Pengwei Liu and ManLin Wei","doi":"10.1039/D4QM00609G","DOIUrl":"https://doi.org/10.1039/D4QM00609G","url":null,"abstract":"<p >3D foam-like composites with a large specific surface area and a well-distributed interconnected pore structure have been recognized as promising materials for energy storage devices. In this study, a novel composite electrode (PEUS-Mn-PS) consisting of a 3D foam-like PEUS matrix embedded with manganese dioxide (MnO<small><sub><em>x</em></sub></small>) was prepared using a simple and facile method. The PEUS matrix was fabricated by incorporating poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and water polyurethane (PU), where a sacrificial template of poly(3,4-ethylenedioxythiophene) (PEDOT)-decorated Ni foam (NF) was utilized. Specifically, surface modification of NF with a thin layer of PEDOT resulted in the formation of a more regular 3D interconnected scaffold of PEU with more hydrophilic surface, facilitating homogeneous formation of the electrode materials and electrolyte infiltration. Benefiting from the high conductivity of PEDOT:PSS, large surface area provided by PEU, and high capacity offered by MnO<small><sub><em>x</em></sub></small>, the resulting flexible PEUS-Mn-PS electrode exhibited an exceptional areal specific capacitance of 681.7 mF cm<small><sup>−2</sup></small> (∼486.9 F g<small><sup>−1</sup></small>) at 1 mF cm<small><sup>−2</sup></small>, much larger than 358.9 mF cm<small><sup>−2</sup></small> of the PUS-Mn-PS electrode prepared without PEDOT modification and 318.7 mF cm<small><sup>−2</sup></small> of the NF-Mn electrode synthesized through direct electrodeposition of MnO<small><sub><em>x</em></sub></small> on NF. The resulting PEUS-Mn-PS electrode allowed the assembled solid-state symmetric flexible SC to achieve an impressive energy density of 0.043 mW h cm<small><sup>−2</sup></small> at a power density of 2.24 mW cm<small><sup>−2</sup></small>, while maintaining excellent electrochemical performance even under various bending angles. This work provides a new approach to designing high-performance flexible SC electrode materials using a simple, cost-effective, and environmentally friendly method.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 109-121"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuzhan Chen, Dan Luo, Peng Geng, Haichuang Lan and Shuzhang Xiao
{"title":"Non-conventional luminescent π-organogels with a rigid chemical structure","authors":"Shuzhan Chen, Dan Luo, Peng Geng, Haichuang Lan and Shuzhang Xiao","doi":"10.1039/D4QM00811A","DOIUrl":"https://doi.org/10.1039/D4QM00811A","url":null,"abstract":"<p >Low-molecular-weight organogels (LMWGs) with π-conjugated structures typically exhibit excellent photoluminescent properties and have significant potential in optoelectronic materials, sensing, and detection applications due to their large specific surface areas and high sensitivity. Conventional organogelators usually contain multiple amide bonds and long flexible chains to facilitate gelation. In contrast, non-conventional π-conjugated organogelators lack flexible chains, offering enhanced atomic economy. Furthermore, the suppression of non-radiative decay caused by the motion of flexible units could lead to higher emission efficiency. Notably, recent research has indicated that rigid chemical structures are essential for achieving ultra-long room-temperature phosphorescence (RTP) in organogels. This review highlights the structures, photoluminescent properties, and applications of non-conventional LMWGs, and discusses future perspectives and challenges in this emerging field.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4029-4048"},"PeriodicalIF":6.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo
{"title":"A smart spiropyran-containing cellulose material for photopatterning, temperature and humidity sensing†","authors":"Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo","doi":"10.1039/D4QM00773E","DOIUrl":"https://doi.org/10.1039/D4QM00773E","url":null,"abstract":"<p >Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 100-108"},"PeriodicalIF":6.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Delocalized π-bond” guided pyramidal nanocrystal superstructures for excellent light trapping in SERS†","authors":"Yang Shang, Bo Ren, Xiaotian Wang and Jie Lin","doi":"10.1039/D4QM00576G","DOIUrl":"https://doi.org/10.1039/D4QM00576G","url":null,"abstract":"<p >Two-dimensional (2D) self-assembly presents significant advantages for optical applications; however, challenges side due to the lack of the <em>z</em>-direction and weak driving force for assembling large particles, making it extremely difficult to achieve the self-assembly of nanoparticles in <em>xy</em>-directions. Herein, we introduce a novel self-assembly route that mimics delocalized π-bonds to construct a 2D CuI pyramidal superstructure, which demonstrates excellent sensitivity and reproducibility for surface enhanced Raman scattering (SERS). After the formation of CuI quasi-octahedra, CuI<small><sub>2</sub></small> ions facilitate the assembly of these octahedra into a 2D superstructure, similar to the behavior of delocalized π-bonds. Ultimately, all CuI<small><sub>2</sub></small> ions are converted to CuI, effectively immobilizing the neighboring CuI octahedra. The obtained CuI pyramidal superstructures not only trap light effectively but also enhance the scattering length through multiple light scattering. Moreover, a large number of copper and iodide defects were generated during the self-assembly process, which endowed CuI superstructures with excellent SERS performance, achieving a metal-comparable EF (1.2 × 10<small><sup>5</sup></small>), a low limit of detection (1 × 10<small><sup>−7</sup></small> M) and remarkable reproducibility. The comprehensive strategy broadens the applicability of self-assembly for the guided construction of assemblies, offering a straightforward, rapid, and cost-effective method to prepare highly sensitive and reproducible SERS substrates.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 65-73"},"PeriodicalIF":6.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baosen Zhang, Ruge Wang, Ruizhi Wang, Baojin Chen, Haidong Li, Ao Shen and Yanchao Mao
{"title":"Recent advances in stretchable hydrogel-based triboelectric nanogenerators for on-skin electronics","authors":"Baosen Zhang, Ruge Wang, Ruizhi Wang, Baojin Chen, Haidong Li, Ao Shen and Yanchao Mao","doi":"10.1039/D4QM00784K","DOIUrl":"https://doi.org/10.1039/D4QM00784K","url":null,"abstract":"<p >Stretchable hydrogel-based triboelectric nanogenerators (TENGs) have attracted significant attention for their potential in on-skin electronics. Stretchable hydrogels, known for their high flexibility, biocompatibility, and conductive properties, have emerged as crucial components in enhancing the mechanical properties and adaptability of TENGs. These hydrogels, which can withstand continuous deformation, exhibit unique features such as self-healing and high ionic conductivity, making them ideal for on-skin electronics. This review highlights the various types of stretchable hydrogels, including ionic, conductive polymer-based, carbon-based, and metal-based hydrogels, emphasizing their mechanical resilience, electrical properties, and ability to endure continuous deformation. Furthermore, it discusses key strategies for optimizing the structural design of TENGs, ensuring that these systems maintain both efficiency and user comfort during prolonged skin contact. Applications of these technologies in wearable electronics, particularly for health monitoring, HMI, and motion tracking, are explored in depth, highlighting their potential to revolutionize next-generation on-skin devices. Finally, the review addresses ongoing challenges such as material durability and user comfort, and offers perspectives on future research directions.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4003-4028"},"PeriodicalIF":6.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengnan Wang, Haoyuan Qi, Hao Huang, Jie Li, Yuchao Liu, Shanfeng Xue, Shian Ying, Changsheng Shi and Shouke Yan
{"title":"Asymmetric deep-blue tetrafluorobenzene-bridged fluorophores with hybridized local and charge-transfer characteristics for efficient OLEDs with low efficiency roll-off†","authors":"Shengnan Wang, Haoyuan Qi, Hao Huang, Jie Li, Yuchao Liu, Shanfeng Xue, Shian Ying, Changsheng Shi and Shouke Yan","doi":"10.1039/D4QM00636D","DOIUrl":"https://doi.org/10.1039/D4QM00636D","url":null,"abstract":"<p >High dynamic range technology places greater demands on organic light-emitting diode (OLED) displays, particularly blue emitters, which face significant challenges in meeting the wide-color-gamut BT.2100 standard and achieving high efficiency at high brightness. Here, we propose a design strategy for constructing bipolar deep-blue materials by combining an asymmetric donor–acceptor–donor′ (D–A–D′) type structure with a novel tetrafluorobenzene acceptor. The resulting molecules feature typical hybridized local and charge-transfer state characteristics, with high oscillator strengths, achieving high fluorescence efficiencies exceeding 80% and fast radiative rates that surpass 6 × 10<small><sup>8</sup></small> s<small><sup>−1</sup></small>. Consequently, the doped device emits a deep-blue light with color coordinates of (0.159, 0.048), and demonstrates a maximum external quantum efficiency (EQE) of 6.35%, maintaining efficiencies of 5.95% and 5.61% at 500 and 1000 cd m<small><sup>−2</sup></small>, respectively. Remarkably, the non-doped OLED boasts a superior EQE of 7.44%, retaining an impressive 6.99% even at 1000 cd m<small><sup>−2</sup></small> and maintaining a high 6.19% up to a brightness of 10 000 cd m<small><sup>−2</sup></small>, demonstrating minimal efficiency roll-off. These findings underscore the great potential of the tetrafluorobenzene-based D–A–D′ type molecular design strategy in developing efficient blue materials and their optoelectronic applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 55-64"},"PeriodicalIF":6.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Channelization of cathode/electrolyte interphase to enhance the rate-capability of LiCoO2†","authors":"Liewu Li, Zhencheng Huang, Qi Yuan, Hongbin Wang, Xuming Yang, Chufang Chen, Xiaoyu Gong, Qianqian Jiang, Jing Chen, Xiaoping Ouyang, Jionghui Wang, Liqing He, Xiangzhong Ren, Jiangtao Hu, Qianling Zhang and Jianhong Liu","doi":"10.1039/D4QM00748D","DOIUrl":"https://doi.org/10.1039/D4QM00748D","url":null,"abstract":"<p >The LiCoO<small><sub>2</sub></small> cathode material holds great promise for achieving high energy density lithium-ion batteries (LIBs) in electronic products. However, it exhibits structural instability when voltages surpass 4.35 V (<em>vs.</em> Li<small><sup>+</sup></small>/Li), particularly under conditions of high current density. Here, we report an <em>in situ</em> surface modification technique for synthesizing a LiCoO<small><sub>2</sub></small> composite coated with ZrP<small><sub>2</sub></small>O<small><sub>7</sub></small> (LiCoO<small><sub>2</sub></small>@ZrP<small><sub>2</sub></small>O<small><sub>7</sub></small>) to mitigate these issues. The LiCoO<small><sub>2</sub></small>@ZrP<small><sub>2</sub></small>O<small><sub>7</sub></small> electrode exhibits a significantly high initial discharge capacity and exceptional long-term cycling stability, with 97.7% capacity retention after 200 cycles at 0.5C with a cutoff voltage of 4.5 V. Additionally, the rate-capability of the modified LiCoO<small><sub>2</sub></small> cathode is effectively enhanced by incorporating a ZrP<small><sub>2</sub></small>O<small><sub>7</sub></small> coating layer, resulting in 76.8% capacity retention at 5C compared to the original capacity at 0.1C. Moreover, density functional theory (DFT) calculations reveal that the incorporation of ZrP<small><sub>2</sub></small>O<small><sub>7</sub></small> facilitates Li<small><sup>+</sup></small> migration into LiCoO<small><sub>2</sub></small> by reducing the energy barrier. These findings propose a potential approach for preparing layered transition metal oxides with exceptionally stable structure and high interfacial Li<small><sup>+</sup></small> diffusion kinetics, particularly for advancing high-energy density all solid-state batteries.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4088-4095"},"PeriodicalIF":6.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}