基于pdms型流体†的纳米流体中的NiO纳米线

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas
{"title":"基于pdms型流体†的纳米流体中的NiO纳米线","authors":"Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas","doi":"10.1039/D5QM00283D","DOIUrl":null,"url":null,"abstract":"<p >Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 17","pages":" 2646-2657"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00283d?page=search","citationCount":"0","resultStr":"{\"title\":\"NiO nanowires in nanofluids based on a PDMS-type fluid†\",\"authors\":\"Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas\",\"doi\":\"10.1039/D5QM00283D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 17\",\"pages\":\" 2646-2657\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00283d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00283d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00283d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高太阳能等环境友好型能源的利用效率是我国社会发展生态转型的基本目标之一。因此,在这项工作中,基于NiO纳米线和聚二甲基硅氧烷(PDMS)流体的纳米流体被开发出来,以提高抛物面槽型聚光太阳能发电厂(CSP-PTC)的效率。为此,我们在实验室成功合成了NiO纳米线,并将其用于制备纳米流体。它们的物理稳定性得到了充分的表征。随后,对这些纳米流体作为传热流体的应用特性进行了表征。这些性能包括表面张力、密度、动态粘度、等压比热和导热系数。基于这些特性,估计了CSP-PTC系统的效率提高,设计的纳米流体实现了高达5%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NiO nanowires in nanofluids based on a PDMS-type fluid†

NiO nanowires in nanofluids based on a PDMS-type fluid†

Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信