Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas
{"title":"基于pdms型流体†的纳米流体中的NiO纳米线","authors":"Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas","doi":"10.1039/D5QM00283D","DOIUrl":null,"url":null,"abstract":"<p >Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 17","pages":" 2646-2657"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00283d?page=search","citationCount":"0","resultStr":"{\"title\":\"NiO nanowires in nanofluids based on a PDMS-type fluid†\",\"authors\":\"Desireé De los Santos, Juan Jesús Gallardo, Iván Carrillo-Berdugo, María Gragera-García, Saray Gragera-García, Violeta Guillén, R. Alcántara and Javier Navas\",\"doi\":\"10.1039/D5QM00283D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 17\",\"pages\":\" 2646-2657\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00283d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00283d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00283d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NiO nanowires in nanofluids based on a PDMS-type fluid†
Improving the efficiency of environmentally friendly energy sources such as solar energy is one of the basic objectives for developing the ecological transition required by our society. Thus, in this work, nanofluids based on NiO nanowires and a polydimethylsiloxane (PDMS) fluid are developed to improve the efficiency of parabolic trough-based concentrating solar power plants (CSP-PTC). To this end, NiO nanowires are successfully synthesized in our laboratory and used to prepare nanofluids. Their physical stability is thoroughly characterized. Subsequently, the properties of interest for the application of these nanofluids as heat transfer fluids are characterized. These properties were surface tension, density, dynamic viscosity, isobaric specific heat and thermal conductivity. Based on these properties, the efficiency improvement of CSP-PTC systems is estimated, achieving improvements of up to 5% with the designed nanofluids.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.