{"title":"一个由静水压力引发的氧化还原反应","authors":"Moto Kikuchi, Tomoya Kuwabara, Gaku Fukuhara, Takanori Suzuki and Yusuke Ishigaki","doi":"10.1039/D5QM00426H","DOIUrl":null,"url":null,"abstract":"<p >Various reactions and systems that respond to hydrostatic pressure, <em>i.e.</em>, one type of mechanical isotropic stimulus, have been developed over the past decades. Here, we show that a one-electron (1e) reduction of dicationic cyclophane can be realised by applying hydrostatic pressure in a water-containing solvent. The large negative value of the volume change <img> observed for this reduction, which is key to inducing the reduction reaction, is due to the desolvation of the H<small><sub>2</sub></small>O molecules and the change in the proximity between the cyclophane π units accompanied by a decrease in electrostatic repulsion. In fact, related monocations did not undergo a 1e reduction under hydrostatic pressure, even in water-containing solvents, indicating that the reduction behaviour is enabled by the cyclophane structure. Furthermore, in the case of weakly polar anions such as BF<small><sub>4</sub></small><small><sup>−</sup></small> and PF<small><sub>6</sub></small><small><sup>−</sup></small>, a change in the solvation/desolvation of the H<small><sub>2</sub></small>O molecules of dicationic cyclophanes can occur upon hydrostatic pressurisation, leading to a 1e reduction, showing that the reduction behaviour can be tuned by selecting the appropriate counter anion. Therefore, this study provides a valuable strategy and guidelines for the rational design of molecules with redox behaviour that can be modulated using hydrostatic pressure.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 19","pages":" 2863-2870"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00426h?page=search","citationCount":"0","resultStr":"{\"title\":\"A redox reaction triggered by hydrostatic pressure in dicationic cyclophanes†\",\"authors\":\"Moto Kikuchi, Tomoya Kuwabara, Gaku Fukuhara, Takanori Suzuki and Yusuke Ishigaki\",\"doi\":\"10.1039/D5QM00426H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Various reactions and systems that respond to hydrostatic pressure, <em>i.e.</em>, one type of mechanical isotropic stimulus, have been developed over the past decades. Here, we show that a one-electron (1e) reduction of dicationic cyclophane can be realised by applying hydrostatic pressure in a water-containing solvent. The large negative value of the volume change <img> observed for this reduction, which is key to inducing the reduction reaction, is due to the desolvation of the H<small><sub>2</sub></small>O molecules and the change in the proximity between the cyclophane π units accompanied by a decrease in electrostatic repulsion. In fact, related monocations did not undergo a 1e reduction under hydrostatic pressure, even in water-containing solvents, indicating that the reduction behaviour is enabled by the cyclophane structure. Furthermore, in the case of weakly polar anions such as BF<small><sub>4</sub></small><small><sup>−</sup></small> and PF<small><sub>6</sub></small><small><sup>−</sup></small>, a change in the solvation/desolvation of the H<small><sub>2</sub></small>O molecules of dicationic cyclophanes can occur upon hydrostatic pressurisation, leading to a 1e reduction, showing that the reduction behaviour can be tuned by selecting the appropriate counter anion. Therefore, this study provides a valuable strategy and guidelines for the rational design of molecules with redox behaviour that can be modulated using hydrostatic pressure.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 19\",\"pages\":\" 2863-2870\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/qm/d5qm00426h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00426h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00426h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A redox reaction triggered by hydrostatic pressure in dicationic cyclophanes†
Various reactions and systems that respond to hydrostatic pressure, i.e., one type of mechanical isotropic stimulus, have been developed over the past decades. Here, we show that a one-electron (1e) reduction of dicationic cyclophane can be realised by applying hydrostatic pressure in a water-containing solvent. The large negative value of the volume change observed for this reduction, which is key to inducing the reduction reaction, is due to the desolvation of the H2O molecules and the change in the proximity between the cyclophane π units accompanied by a decrease in electrostatic repulsion. In fact, related monocations did not undergo a 1e reduction under hydrostatic pressure, even in water-containing solvents, indicating that the reduction behaviour is enabled by the cyclophane structure. Furthermore, in the case of weakly polar anions such as BF4− and PF6−, a change in the solvation/desolvation of the H2O molecules of dicationic cyclophanes can occur upon hydrostatic pressurisation, leading to a 1e reduction, showing that the reduction behaviour can be tuned by selecting the appropriate counter anion. Therefore, this study provides a valuable strategy and guidelines for the rational design of molecules with redox behaviour that can be modulated using hydrostatic pressure.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.