Aleksandr S Slavich,Georgy A Ermolaev,Ilya A Zavidovskiy,Dmitriy V Grudinin,Konstantin V Kravtsov,Mikhail K Tatmyshevskiy,Mikhail S Mironov,Adilet N Toksumakov,Gleb I Tselikov,Ilia M Fradkin,Kirill V Voronin,Maksim R Povolotskiy,Olga G Matveeva,Alexander V Syuy,Dmitry I Yakubovsky,Dmitry M Tsymbarenko,Ivan Kruglov,Davit A Ghazaryan,Sergey M Novikov,Andrey A Vyshnevyy,Aleksey V Arsenin,Valentyn S Volkov,Kostya S Novoselov
{"title":"Germanium disulfide as an alternative high refractive index and transparent material for UV-visible nanophotonics.","authors":"Aleksandr S Slavich,Georgy A Ermolaev,Ilya A Zavidovskiy,Dmitriy V Grudinin,Konstantin V Kravtsov,Mikhail K Tatmyshevskiy,Mikhail S Mironov,Adilet N Toksumakov,Gleb I Tselikov,Ilia M Fradkin,Kirill V Voronin,Maksim R Povolotskiy,Olga G Matveeva,Alexander V Syuy,Dmitry I Yakubovsky,Dmitry M Tsymbarenko,Ivan Kruglov,Davit A Ghazaryan,Sergey M Novikov,Andrey A Vyshnevyy,Aleksey V Arsenin,Valentyn S Volkov,Kostya S Novoselov","doi":"10.1038/s41377-025-01886-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01886-y","url":null,"abstract":"Thanks to their record high refractive index and giant optical anisotropy, van der Waals (vdW) materials have accelerated the development of nanophotonics. However, traditional high refractive index materials, such as titanium dioxide (TiO2), still dominate in the most important visible range. This is due to the current lack of transparent vdW materials across the entire visible spectrum. In this context, we propose that germanium disulfide (GeS2) could offer a significant breakthrough. With its high refractive index, negligible losses, and biaxial optical anisotropy across the whole visible range, GeS2 has the potential to complement TiO2 and close the application gap of vdW materials in the visible spectrum. The addition of GeS2 could have a profound impact on the design of van der Waals nanophotonic circuits for any operation wavelength from ultraviolet to infrared, emphasizing the significance of the potential impact of GeS2 on the field of nanophotonics.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"14 1","pages":"213"},"PeriodicalIF":0.0,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144311605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johannes E. Fröch, Luocheng Huang, Zhihao Zhou, Virat Tara, Zhuoran Fang, Shane Colburn, Alan Zhan, Minho Choi, Arnab Manna, Andrew Tang, Zheyi Han, Karl F. Böhringer, Arka Majumdar
{"title":"Full color visible imaging with crystalline silicon meta-optics","authors":"Johannes E. Fröch, Luocheng Huang, Zhihao Zhou, Virat Tara, Zhuoran Fang, Shane Colburn, Alan Zhan, Minho Choi, Arnab Manna, Andrew Tang, Zheyi Han, Karl F. Böhringer, Arka Majumdar","doi":"10.1038/s41377-025-01888-w","DOIUrl":"https://doi.org/10.1038/s41377-025-01888-w","url":null,"abstract":"<p>Silicon is a common material of choice for semiconductor optics in the infrared spectral range, due to its low cost, well-developed high-volume manufacturing methods, high refractive index, and transparency. It is, however, typically ill-suited for applications in the visible range, due to its large absorption coefficient, especially for green and blue light. Counterintuitively, we demonstrate how ultra-thin crystalline meta-optics enable full-color imaging in the visible range. For this purpose, we employ an inverse design approach, which maximizes the volume under the broadband modulation transfer function of the meta-optics. Beyond that, we demonstrate polarization-multiplexed functionality in the visible. This is particularly important as polarization optics require high index materials, a characteristic often difficult to obtain in the visible.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144311799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongxin Jiang, Sijie Li, Wenlong Yao, Lu Han, Lei Zhang, Xue Li, Lifeng Zhang, Xian Tang, Xin Li, Haisheng San
{"title":"High-efficiency 90Sr radio-photovoltaic cells based on waveguide light concentration structure","authors":"Tongxin Jiang, Sijie Li, Wenlong Yao, Lu Han, Lei Zhang, Xue Li, Lifeng Zhang, Xian Tang, Xin Li, Haisheng San","doi":"10.1038/s41377-025-01875-1","DOIUrl":"https://doi.org/10.1038/s41377-025-01875-1","url":null,"abstract":"<p>Radio-photovoltaic cells (RPVCs) are able to offer high reliability and extended operational lifetimes, making them ideal for harsh-environment applications. However, the two-stage energy conversion process inherently limits energy conversion efficiency (ECE). This study presents a novel RPVC design based on a waveguide light concentration (WLC) scheme, employing multilayer-stacked GAGG:Ce scintillation waveguides alternately loaded with <sup>90</sup>Sr radioisotope sources. Electron beam irradiation tests revealed highly efficient radioluminescence (RL) emission from the edge surfaces of GAGG:Ce waveguide at electron energies exceeding 60 keV. A RPVC prototype incorporating 1.43 Ci of ⁹⁰Sr achieved a maximum output power (<i>P</i><sub>max</sub>) of 48.9 μW, with an unprecedented ECE of 2.96%—the highest reported value for radioisotope-powered RPVCs to date. Furthermore, a multi-module integrated RPVC prototype demonstrated a <i>P</i><sub>max</sub> of 3.17 mW, with a short circuit current of 2.23 mA and an open circuit voltage of 2.14 V. Remarkably, the device exhibited only 13.8% RL performance degradation after a 50-year equivalent electron beam irradiation (total fluence: 5.625 × 10<sup>18</sup> e/cm<sup>2</sup>), confirming exceptional radiation hardness. These findings demonstrate that the WLC-based RPVCs achieve both high power output and exceptional long-term stability, representing a substantial advancement for facilitating nuclear battery applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"174 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementing an encrypted display with the electron-induced colour router array","authors":"Hyoseok Park, Minsu Park, Yeonsang Park","doi":"10.1038/s41377-025-01889-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01889-9","url":null,"abstract":"<p>Electron-induced colour routers actively manipulate dichromatic photon momentum at deep subwavelength scales, enabling programmable encrypted displays with enhanced security and high integration for advanced photonic applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Universal point spread function engineering for 3D optical information processing","authors":"Md Sadman Sakib Rahman, Aydogan Ozcan","doi":"10.1038/s41377-025-01887-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01887-x","url":null,"abstract":"<p>Point spread function (PSF) engineering has been pivotal in the remarkable progress made in high-resolution imaging in the last decades. However, the diversity in PSF structures attainable through existing engineering methods is limited. Here, we report universal PSF engineering, demonstrating a method to synthesize an arbitrary set of spatially varying 3D PSFs between the input and output volumes of a spatially incoherent diffractive processor composed of cascaded transmissive surfaces. We rigorously analyze the PSF engineering capabilities of such diffractive processors within the diffraction limit of light and provide numerical demonstrations of unique imaging capabilities, such as snapshot 3D multispectral imaging without involving any spectral filters, axial scanning or digital reconstruction steps, which is enabled by the spatial and spectral engineering of 3D PSFs. Our framework and analysis would be important for future advancements in computational imaging, sensing, and diffractive processing of 3D optical information.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144268604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MetaSeeker: sketching an open invisible space with self-play reinforcement learning","authors":"Bei Wu, Chao Qian, Zhedong Wang, Pujing Lin, Erping Li, Hongsheng Chen","doi":"10.1038/s41377-025-01876-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01876-0","url":null,"abstract":"<p>Controlling electromagnetic (EM) waves at will is fundamentally important for diverse applications, ranging from optical microcavities, super-resolution imaging, to quantum information processing. Decades ago, the forays into metamaterials and transformation optics have ignited unprecedented interest to create an invisibility cloak—a closed space with any object inside invisible. However, all features of the scattering waves become stochastic and uncontrollable when EM waves interact with an open and disordered environment, making an open invisible space almost impossible. Counterintuitively, here we for the first time present <i>an open, cluttered, and dynamic</i> but invisible space, wherein any freely-moving object maintains invisible. To adapt to the disordered environment, we randomly organize a swarm of reconfigurable metasurfaces, and master them by MetaSeeker, a population-based reinforcement learning (RL). MetaSeeker constructs a narcissistic internal world to mirror the stochastic physical world, capable of autonomous preferment, evolution, and adaptation. In the perception-decision-execution experiment, multiple RL agents automatically interact with the ever-changing environments and integrate a post-hoc explainability to visualize the decision-making process. The hidden objects, such as vehicle cluster and experimenter, can freely scale, race, and track in the invisible space, with the environmental similarity of 99.5%. Our results constitute a monumental stride to reshape the evolutionary landscape of metasurfaces from individual to swarm intelligence and usher in the remote management of entire EM space.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144211359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin Zhou, Yuan Cheng, Jia Ye, Zonglei Li, Haijun He, Wei Pan, Bin Luo, Lianshan Yan
{"title":"High-spatiotemporal-resolution distributed Brillouin sensing with transient acoustic wave","authors":"Yin Zhou, Yuan Cheng, Jia Ye, Zonglei Li, Haijun He, Wei Pan, Bin Luo, Lianshan Yan","doi":"10.1038/s41377-025-01848-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01848-4","url":null,"abstract":"<p>Real-time wide-area environment sensing is crucial for accessing open-world information streams from nature and human society. As a transformative technique distinct from electrical sensors, distributed optical fiber sensing especially for Brillouin scattering-based paradigm has shown superior bandwidth, power, and sensing range. Still, it suffers from insufficient resolution and timeliness to characterize remote dynamic events. Here we develop TABS—a transient acoustic wave-based Brillouin optical time domain analysis sensor, supporting long-range high-spatiotemporal-resolution distributed sensing. By designing a functionally synergistic sensor architecture, TABS elaborately leverages wideband and time-weighted energy transformation properties of a transient acousto-optic interaction to breaking through Brillouin-energy-utilization-efficiency bottleneck, enabling enhancements in overall sensing performance. In the experiment, TABS has achieved a 37-cm spatial resolution over a 50-km range with 1 to 2 orders of magnitude improvement in temporal resolution compared to prevailing Brillouin sensing approaches. For the first time, TABS is explored for state imaging of evacuated-tube maglev transportation system as an exemplary application, showcasing its feasibility and flexibility for potential open-world applications and large-scale intelligent perception.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144201807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shixin Xue, Mingxiao Li, Raymond Lopez-rios, Jingwei Ling, Zhengdong Gao, Qili Hu, Tian Qiu, Jeremy Staffa, Lin Chang, Heming Wang, Chao Xiang, John E. Bowers, Qiang Lin
{"title":"Pockels laser directly driving ultrafast optical metrology","authors":"Shixin Xue, Mingxiao Li, Raymond Lopez-rios, Jingwei Ling, Zhengdong Gao, Qili Hu, Tian Qiu, Jeremy Staffa, Lin Chang, Heming Wang, Chao Xiang, John E. Bowers, Qiang Lin","doi":"10.1038/s41377-025-01872-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01872-4","url":null,"abstract":"<p>The invention of the laser unleashed the potential of optical metrology, leading to numerous advancements in modern science and technology. This reliance on lasers, however, also introduces a bottleneck for precision optical metrology, as it requires sophisticated photonic infrastructure for precise laser-wave control, leading to limited metrology performance and significant system complexity. Here, we take a key step toward overcoming this challenge by demonstrating a Pockels laser with multifunctional capabilities that elevate optical metrology to a new level. The chip-scale laser achieves a narrow intrinsic linewidth down to 167 Hz and a broad mode-hop-free tuning range up to 24 GHz. In particular, it delivers an unprecedented frequency chirping rate of up to 20 EHz/s and an exceptional modulation bandwidth exceeding 10 GHz, both of which are orders of magnitude greater than those of existing lasers. Leveraging this laser, we successfully achieve velocimetry at 40 m/s over a short distance of 0.4 m, and measurable velocities up to the first cosmic velocity at 1 m away—a feat unattainable with conventional ranging approaches. At the same time, we achieve distance metrology with a ranging resolution of <2 cm. Furthermore, for the first time to our knowledge, we implement a dramatically simplified architecture for laser frequency stabilization by directly locking the laser to an external reference gas cell without requiring additional external light control. This approach enables long-term laser stability with a frequency fluctuation of only ±6.5 MHz over 60 min. The demonstrated Pockels laser combines elegantly high laser coherence with ultrafast frequency reconfigurability and superior multifunctional capability. We envision its profound impact across diverse fields including communication, sensing, autonomous driving, quantum information processing, and beyond.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144176632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable miniature on-chip Fourier transform spectrometer for Raman spectroscopy","authors":"Sarp Kerman, Xiao Luo, Zuoqin Ding, Zhewei Zhang, Zhuo Deng, Xiaofei Qin, Yuran Xu, Shuhua Zhai, Chang Chen","doi":"10.1038/s41377-025-01861-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01861-7","url":null,"abstract":"<p>Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrate into compact devices such as wearables. Waveguide-based Fourier Transform Spectrometers (FTS) enable compact spectrometers, and multi-aperture designs can achieve high throughput for applications such as Raman spectroscopy; however, experimental research in this domain remains limited. In this work, we present a multi-aperture SiN waveguide-based FTS overcoming these limitations and enabling Raman spectroscopy of isopropyl alcohol, glucose, Paracetamol, and Ibuprofen with enhanced throughput. Our spectrometer chip, fabricated on a 200 mm SiN wafer, with 160 edge-coupled waveguide apertures connected to an array of ultra-compact interferometers and a small footprint of just 1.6 mm × 3.2 mm, achieves a spectral range of 40 nm and a resolution of 0.5 nm. Experimental results demonstrate that the least absolute shrinkage and selection operator (LASSO) regression significantly enhances Raman spectrum reconstruction. Our work on waveguide-based spectrometry paves the way for integrating accurate and compact Raman sensors into consumer electronics and space exploration instruments.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144176644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanouil G. Mavrotsoupakis, Leonidas Mouchliadis, Junhui Cao, Minoas C. Chairetis, Marios E. Triantafyllou-Rundell, Eleni C. P. Macropulos, Giannis G. Paschos, Apostolos Pantousas, Huaying Liu, Alexey V. Kavokin, Hamid Ohadi, Constantinos C. Stoumpos, Pavlos G. Savvidis
{"title":"Unveiling asymmetric topological photonic states in anisotropic 2D perovskite microcavities","authors":"Emmanouil G. Mavrotsoupakis, Leonidas Mouchliadis, Junhui Cao, Minoas C. Chairetis, Marios E. Triantafyllou-Rundell, Eleni C. P. Macropulos, Giannis G. Paschos, Apostolos Pantousas, Huaying Liu, Alexey V. Kavokin, Hamid Ohadi, Constantinos C. Stoumpos, Pavlos G. Savvidis","doi":"10.1038/s41377-025-01852-8","DOIUrl":"https://doi.org/10.1038/s41377-025-01852-8","url":null,"abstract":"<p>Photonic Rashba-Dresselhaus coupling in anisotropic microcavities offers a compelling platform for realizing unconventional topological states with non-zero Berry curvature. In this study, we explore a self-assembled two-dimensional hybrid structure composed of anisotropically oriented organic/inorganic halide perovskite layers confined within a microcavity. The strong optical anisotropies of these perovskite systems, driven by significant refractive index contrasts and robust excitonic resonances at room temperature, enable the emergence of synthetic magnetic fields that mediate photonic and polaritonic interactions. The interplay between polarization-dependent modes and spatial inversion symmetry breaking gives rise to strong photonic Rashba-Dresselhaus spin-orbit coupling, leading to distinct modifications in band topology and energy dispersions. These effects result in the formation of unconventional topological features, including non-zero Berry curvature and off-axis diabolical points, within the photonic and polaritonic bands at room temperature. Our findings reveal the critical role of optical and geometric anisotropies in engineering synthetic gauge fields for light, providing a versatile approach for designing photonic systems with novel topological properties. By leveraging the unique properties of halide perovskites and their ability to support both room-temperature excitons and large birefringence, this work advances the development of polaritonic platforms for applications in topological photonics and spinoptronics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"209 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144165274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}