理学最新文献

筛选
英文 中文
A plasmonic meta-rotary travelling-wave oscillator with ultrahigh phase accuracy and figure of merit 一种具有超高相位精度和品质图的等离子体元旋转行波振荡器
Light-Science & Applications Pub Date : 2025-08-21 DOI: 10.1038/s41377-025-01966-z
Da Yue Yao, Hao Chi Zhang, Pei Hang He, Jia Jie Shen, Jia Wen Zhu, Peigen Zhou, Xin Yu Zhang, Le Peng Zhang, Li Jie Wu, Cun Yue Wei, Rui Wen Shao, Yi Fan, Yang Zhao, Jixin Chen, Wei Hong, Tie Jun Cui
{"title":"A plasmonic meta-rotary travelling-wave oscillator with ultrahigh phase accuracy and figure of merit","authors":"Da Yue Yao, Hao Chi Zhang, Pei Hang He, Jia Jie Shen, Jia Wen Zhu, Peigen Zhou, Xin Yu Zhang, Le Peng Zhang, Li Jie Wu, Cun Yue Wei, Rui Wen Shao, Yi Fan, Yang Zhao, Jixin Chen, Wei Hong, Tie Jun Cui","doi":"10.1038/s41377-025-01966-z","DOIUrl":"https://doi.org/10.1038/s41377-025-01966-z","url":null,"abstract":"<p>High phase accuracy and figure of merit (FOM) of quadrature signals are essential for integrated systems, including quadrature amplitude modulation (QAM) communications and multi-input multi-output (MIMO) radar. However, the traditional quadrature oscillators often struggle to meet the stringent requirements of high FOM and high quadrature phase accuracy simultaneously. To address this challenge, we propose a spoof surface plasmon polariton (SPP) metawaveguide (Meta) to design on-chip rotary traveling-wave oscillator (RTWO). By leveraging the advanced dispersion manipulation capability of Meta, the physical and electrical lengths of transmission line (TL) are effectively decoupled, thereby overcoming the limitations associated with the unequal electrical lengths of inner and outer loops of the resonator, which is difficult to achieve in the conventional RTWOs. Based on the design methodology, we realize a Meta-RTWO using the 65 nm CMOS technology and achieve a measured FOM of 188.5 dBc/Hz and a phase error of approximately 0.21°. These metrics surpass those of the traditional oscillators fabricated even by more advanced 28 nm CMOS processes. This study demonstrates that Meta-RTWO achieves a significant improvement in both output signal quadrature accuracy and FOM under process limitations without using additional phase adjustment structures.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144901374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanosecond response perovskite quantum dot light-emitting diodes with ultra-high resolution for active display application 用于主动显示应用的纳秒响应超高分辨率钙钛矿量子点发光二极管
Light-Science & Applications Pub Date : 2025-08-21 DOI: 10.1038/s41377-025-01959-y
Qingkai Zhang, Kaiyu Yang, Chengyu Luo, Zhihan Lin, Weiguo Chen, Yongsheng Yu, Hailong Hu, Fushan Li
{"title":"Nanosecond response perovskite quantum dot light-emitting diodes with ultra-high resolution for active display application","authors":"Qingkai Zhang, Kaiyu Yang, Chengyu Luo, Zhihan Lin, Weiguo Chen, Yongsheng Yu, Hailong Hu, Fushan Li","doi":"10.1038/s41377-025-01959-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01959-y","url":null,"abstract":"<p>Perovskite quantum dots light-emitting diodes (PeLEDs) have been developed for next-generation high resolution display applications. However, the hindered charge injection and massive charge trapping due to the insulating and defective surface of quantum dots (QDs) usually lead to a slow rise in electroluminescence (EL) response, which makes it challenging to realize ultra-high refresh rate displays with nanosecond response. Herein, an ionic liquid 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate ([BMIM]OTF) was used to enhance the crystallinity and reduce the surface area ratio of QDs, which effectively decreases defect state and injection barrier at the interface. Therefore, the rise time of EL response with steady-state is successfully reduced by over 75%. We further reduce the capacitance effect by decreasing the light-emitting unit area. Thus, ultra-high resolution (9072 pixel per inch) PeLEDs with light-emitting pixel size of 1.3 μm were realized, achieving a brightness exceeding 170,000 cd/m<sup>2</sup> and an external quantum efficiency up to 15.79%. Moreover, it achieves nanosecond ultrafast response time under steady-state, which is the fastest response time of PeLEDs reported so far. Our work represents the most advanced performance of ultra-high-resolution PeLEDs, and provides in-depth insights into the mechanism of improving their response speed, showing significant potential in high refresh rate active display application.</p><figure></figure>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144898176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infrared visualized snakes-inspired artificial vision systems with CMOS sensors-integrated upconverters 带有CMOS传感器集成上转换器的红外可视化蛇启发人工视觉系统
Light-Science & Applications Pub Date : 2025-08-20 DOI: 10.1038/s41377-025-02001-x
Ge Mu, Yangye Lin, Kerui Fu, Xin Tang
{"title":"Infrared visualized snakes-inspired artificial vision systems with CMOS sensors-integrated upconverters","authors":"Ge Mu, Yangye Lin, Kerui Fu, Xin Tang","doi":"10.1038/s41377-025-02001-x","DOIUrl":"https://doi.org/10.1038/s41377-025-02001-x","url":null,"abstract":"<p>Biological visions have inspired the development of artificial vision systems with diverse visual functional traits, however, the detected wavelength is only in visible light between 0.4 and 0.78 μm, restricting their applications. Snakes generate a thermal image of animals due to pit organs for detecting and converting infrared, allowing them to accurately target predators or prey even under darkness. Inspired by natural infrared visualized snakes, we propose artificial vision systems with CMOS sensors-integrated upconverters to break visible light limitations to realize 3840 × 2160 ultra-high-resolution short-wave infrared (SWIR) and mid-wave infrared (MWIR) visualization imaging for the first time. Through colloidal quantum dot barrier heterojunction architecture design of infrared detecting units and the introduction of co-hosted emitting units, the luminance and upconversion efficiency reach up to 6388.09 cd m<sup>−2</sup> and 6.41% for SWIR, 1311.64 cd m<sup>−2</sup> and 4.06% for MWIR at room temperature. Our artificial vision systems broaden a wide spectrum of applications within infrared, such as night vision, agricultural science, and industry inspection, marking a significant advance in bioartificial vision.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144898179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-dependent physical unclonable functions by long-lived triplet excitons in carbon dots 碳点中长寿命三重激子的时变物理不可克隆函数
Light-Science & Applications Pub Date : 2025-08-20 DOI: 10.1038/s41377-025-01940-9
Yan-Wei Hu, Qing Cao, Shi-Yu Song, Yuan Sun, Ya-Chuan Liang, Wen-Bo Zhao, Chao-Fan Lv, Chong-Xin Shan, Kai-Kai Liu
{"title":"Time-dependent physical unclonable functions by long-lived triplet excitons in carbon dots","authors":"Yan-Wei Hu, Qing Cao, Shi-Yu Song, Yuan Sun, Ya-Chuan Liang, Wen-Bo Zhao, Chao-Fan Lv, Chong-Xin Shan, Kai-Kai Liu","doi":"10.1038/s41377-025-01940-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01940-9","url":null,"abstract":"<p>Physical unclonable functions (PUFs), relying extensively on the random spatial distribution of block elements, are promising technology for generating unclonable cryptograph. Herein, we demonstrate time-dependent PUFs (TD-PUFs) by introducing carbon dots (CDs) with bright and long-lived triplet excitons as block elements. The constructed TD-PUFs evolve into multiple unclonable PUFs over time, effectively breaking the spatial limitation of transitional PUFs and increasing the complexity, making them much more difficult to be attacked. This temporal evolution introduces an additional layer of security, as the dynamic nature of TD-PUFs makes it increasingly challenging for adversaries to predict or replicate their states. We have developed pixel matrix function (PMF) to describe the evolution process of the TD-PUFs, enabling a detailed analysis of the dynamic behavior and unique security features. In addition, we exhibit a TD-PUFs painting (30 × 40 cm<sup>2</sup>) by an etching technology where the primary structures of the panting undergo a transformation over time, driven by the varying triplet exciton lifetimes of the CDs. The proposed concept of TD-PUFs overcome their spatial limitations and increase the complexity, making the PUF labels more difficulty to be cracked.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144898178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporating information of causal variants in genomic prediction using GBLUP or machine learning models in a simulated livestock population. 利用GBLUP或机器学习模型在模拟牲畜种群中整合基因组预测中因果变异的信息。
IF 6.5
Journal of Animal Science and Biotechnology Pub Date : 2025-08-19 DOI: 10.1186/s40104-025-01250-5
Jifan Yang, Mario P L Calus, Yvonne C J Wientjes, Theo H E Meuwissen, Pascal Duenk
{"title":"Incorporating information of causal variants in genomic prediction using GBLUP or machine learning models in a simulated livestock population.","authors":"Jifan Yang, Mario P L Calus, Yvonne C J Wientjes, Theo H E Meuwissen, Pascal Duenk","doi":"10.1186/s40104-025-01250-5","DOIUrl":"10.1186/s40104-025-01250-5","url":null,"abstract":"<p><strong>Background: </strong>Genomic prediction has revolutionized animal breeding, with GBLUP being the most widely used prediction model. In theory, the accuracy of genomic prediction could be improved by incorporating information from QTL. This strategy could be especially beneficial for machine learning models that are able to distinguish informative from uninformative features. The objective of this study was to assess the benefit of incorporating QTL genotypes in GBLUP and machine learning models. This study simulated a selected livestock population where QTL and their effects were known. We used four genomic prediction models, GBLUP, (weighted) 2GBLUP, random forest (RF), and support vector regression (SVR) to predict breeding values of young animals, and considered different scenarios that varied in the proportion of genetic variance explained by the included QTL.</p><p><strong>Results: </strong>2GBLUP resulted in the highest accuracy. Its accuracy increased when the included QTL explained up to 80% of the genetic variance, after which the accuracy dropped. With a weighted 2GBLUP model, the accuracy always increased when more QTL were included. Prediction accuracy of GBLUP was consistently higher than SVR, and the accuracy for both models slightly increased with more QTL information included. The RF model resulted in the lowest prediction accuracy, and did not improve by including QTL information.</p><p><strong>Conclusions: </strong>Our results show that incorporating QTL information in GBLUP and SVR can improve prediction accuracy, but the extent of improvement varies across models. RF had a much lower prediction accuracy than the other models and did not show improvements when QTL information was added. Two possible reasons for this result are that the data structure in our data does not allow RF to fully realize its potential and that RF is not designed well for this particular prediction problem. Our study highlighted the importance of selecting appropriate models for genomic prediction and underscored the potential limitations of machine learning models when applied to genomic prediction in livestock.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"16 1","pages":"118"},"PeriodicalIF":6.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taurine alleviated paraquat-induced oxidative stress and gut-liver axis damage in weaned piglets by regulating the Nrf2/Keap1 and TLR4/NF-κB signaling pathways. 牛磺酸通过调节Nrf2/Keap1和TLR4/NF-κB信号通路减轻百草枯诱导的断奶仔猪氧化应激和肠-肝轴损伤。
IF 6.5
Journal of Animal Science and Biotechnology Pub Date : 2025-08-18 DOI: 10.1186/s40104-025-01244-3
Chen Chen, Min Qi, Weilong Zhang, Fanxing Chen, Zhihong Sun, Weizhong Sun, Wenjie Tang, Zhenguo Yang, Xuan Zhao, Zhiru Tang
{"title":"Taurine alleviated paraquat-induced oxidative stress and gut-liver axis damage in weaned piglets by regulating the Nrf2/Keap1 and TLR4/NF-κB signaling pathways.","authors":"Chen Chen, Min Qi, Weilong Zhang, Fanxing Chen, Zhihong Sun, Weizhong Sun, Wenjie Tang, Zhenguo Yang, Xuan Zhao, Zhiru Tang","doi":"10.1186/s40104-025-01244-3","DOIUrl":"10.1186/s40104-025-01244-3","url":null,"abstract":"<p><strong>Background: </strong>Oxidative stress can impair intestinal barrier function and cause liver damage, resulting in reduced animal productivity. Paraquat (PQ) induces significant oxidative stress in weaned piglets. The antioxidant, anti-inflammatory, and metabolic regulatory functions of taurine (Tau), a free amino acid that is widely distributed in the body, have been extensively studied. However, the mechanisms by which dietary Tau alleviates oxidative stress and gut-liver axis damage in weaned piglets remain unclear.</p><p><strong>Methods: </strong>Forty weaned piglets (20 males and 20 females; 6.41 ± 0.11 kg; 25 days old; Duroc × Landrace × Yorkshire) were used in a 2 × 2 factorial design to investigate the mechanism by which dietary Tau (0% or 0.4%) alleviates PQ-induced oxidative stress and gut-liver axis damage. We analyzed key biomarkers related to gut barrier function, mucosal damage repair, liver damage, gut-liver immunity, antioxidant capacity, systemic immune homeostasis, antioxidant levels, and gut microbiota diversity in piglets under normal and acute oxidative stress. In particular, we evaluated the coordinated regulation of gut-liver axis function mediated by Tau through the Nrf2/Keap1 (antioxidant) and TLR4/NF-κB (immune modulation) signaling pathways. Partial least squares path modeling and molecular docking were used to explore the intrinsic relationship between PQ, Tau, and the gut-liver axis.</p><p><strong>Results: </strong>PQ exposure impaired gut barrier function, increased the liver fibrosis area, and markedly affected gut microbial diversity (P < 0.05). Tau effectively alleviated PQ-induced oxidative stress by activating the Nrf2/Keap1 pathway and inhibiting the TLR4/NF-κB pathway. This enhanced gut barrier function, promoted mucosal repair, and significantly suppressed the concentration and circulation of lipopolysaccharides in the blood, consequently reducing liver damage (P < 0.05). This further facilitated the optimization of gut microbiota composition, thereby supporting the positive regulation of the gut-liver axis and improving systemic immune and antioxidant functions.</p><p><strong>Conclusions: </strong>Tau improved the health status of weaned piglets under both normal and stressed conditions by modulating the Nrf2/Keap1 and TLR4/NF-κB pathways, offering a potential new nutritional strategy for alleviating gut-liver damage.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"16 1","pages":"117"},"PeriodicalIF":6.5,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of quantum key distribution and high-throughput classical communications in field-deployed multi-core fibers 现场部署多芯光纤中量子密钥分配与高吞吐量经典通信的集成
Light-Science & Applications Pub Date : 2025-08-13 DOI: 10.1038/s41377-025-01982-z
Qi Wu, Domenico Ribezzo, Giammarco Di Sciullo, Sebastiano Cocchi, Divya Ann Shaji, Lucas Alves Zischler, Ruben Luis, Paolo Serena, Chiara Lasagni, Alberto Bononi, Tetsuya Hayashi, Alessandro Gagliano, Paolo Martelli, Alberto Gatto, Paola Parolari, Pierpaolo Boffi, Davide Bacco, Alessandro Zavatta, Yixiao Zhu, Weisheng Hu, Zhaopeng Xu, Mark Shtaif, Andrea Marotta, Fabio Graziosi, Antonio Mecozzi, Cristian Antonelli
{"title":"Integration of quantum key distribution and high-throughput classical communications in field-deployed multi-core fibers","authors":"Qi Wu, Domenico Ribezzo, Giammarco Di Sciullo, Sebastiano Cocchi, Divya Ann Shaji, Lucas Alves Zischler, Ruben Luis, Paolo Serena, Chiara Lasagni, Alberto Bononi, Tetsuya Hayashi, Alessandro Gagliano, Paolo Martelli, Alberto Gatto, Paola Parolari, Pierpaolo Boffi, Davide Bacco, Alessandro Zavatta, Yixiao Zhu, Weisheng Hu, Zhaopeng Xu, Mark Shtaif, Andrea Marotta, Fabio Graziosi, Antonio Mecozzi, Cristian Antonelli","doi":"10.1038/s41377-025-01982-z","DOIUrl":"https://doi.org/10.1038/s41377-025-01982-z","url":null,"abstract":"<p>Quantum key distribution (QKD) is a secure communication method for sharing symmetric cryptographic keys based on the principles of quantum physics. Its integration into the fiber-optic network infrastructure is important for ensuring privacy in optical communications. Multi-core fibers (MCFs), the likely building blocks of future high-capacity optical networks, offer new opportunities for such integration. Here, we experimentally demonstrate, for the first time, the coexistence of discrete-variable QKD and high-throughput classical communication in the C-band over a field-deployed MCF with industry standard cladding diameter of 125 μm. Specifically, we demonstrate successful secure-key establishment in one core of a 25.2-km uncoupled-core MCF, while simultaneously loading the remaining three cores with full C-band counter-propagating classical traffic at an aggregate net rate of 110.8 Tb/s. By proposing and experimentally validating an improved analytical model for inter-core spontaneous Raman scattering noise, we find that this configuration is optimal for our deployed MCF link as it is immune to four-wave mixing, that becomes relevant when the quantum and classical signals are propagating in the same direction. Our findings make an important step forward in demonstrating the integration of QKD and classical transmission in uncoupled-core multi-core fibers for next-generation optical communication networks.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"750 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144825907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate 铌酸锂薄膜上的混合克尔-电光频率梳
Light-Science & Applications Pub Date : 2025-08-12 DOI: 10.1038/s41377-025-01906-x
Yunxiang Song, Yaowen Hu, Marko Lončar, Kiyoul Yang
{"title":"Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate","authors":"Yunxiang Song, Yaowen Hu, Marko Lončar, Kiyoul Yang","doi":"10.1038/s41377-025-01906-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01906-x","url":null,"abstract":"<p>Optical frequency combs are indispensable links between the optical and microwave domains. Chip-scale integration promises compact, scalable, and power-efficient frequency comb sources, enabled by the resonantly-enhanced Kerr effect or the electro-optic effect. While combs utilizing the former can reach octave-spanning bandwidths, and combs based on the latter can feature microwave-rate spacings, achieving both features at the same time has been challenging. Here, we simultaneously leverage the strong Kerr and electro-optic effects on thin-film lithium niobate, where dissipative Kerr soliton generation is followed by electro-optic phase modulation, to realize an integrated frequency comb reference with 2,589 lines spaced by 29.308 GHz and spanning 75.9 THz (588 nm). Further, we demonstrate electronic stabilization and control of the comb spacing, naturally facilitated by this approach. The broadband, microwave-rate frequency comb in our work overcomes the spacing-span tradeoff that exists in nonlinear integrated frequency comb sources, paving the way towards chip-scale solutions for next-generation laser spectroscopy, microwave and millimeter wave synthesis, as well as optical communications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-mode transparent device for 360° quasi-omnidirectional self-driven photodetection and efficient ultralow-power neuromorphic computing 一种用于360°准全向自驱动光探测和高效超低功耗神经形态计算的双模透明器件
Light-Science & Applications Pub Date : 2025-08-12 DOI: 10.1038/s41377-025-01991-y
Min Jiang, Yukun Zhao, Tong Liu, Yanyan Chang, Yuan Tang, Min Zhou, Yiping Shi, Jianya Zhang, Lifeng Bian, Shulong Lu
{"title":"A dual-mode transparent device for 360° quasi-omnidirectional self-driven photodetection and efficient ultralow-power neuromorphic computing","authors":"Min Jiang, Yukun Zhao, Tong Liu, Yanyan Chang, Yuan Tang, Min Zhou, Yiping Shi, Jianya Zhang, Lifeng Bian, Shulong Lu","doi":"10.1038/s41377-025-01991-y","DOIUrl":"https://doi.org/10.1038/s41377-025-01991-y","url":null,"abstract":"<p>Due to the extremely high manufacturing standards, the integration of quasi-omnidirectional photodetectors and synaptic devices within a single device remains a long-standing challenge. In this work, we have designed a graphene/(Al,Ga)N nanowire heterojunction, demonstrating the monolithic integration of self-driven 360° photodetectors and artificial synapses in a dual-mode transparent device successfully. By manipulating the carrier transport dynamics through controlling the bias voltage, the degree of oxygen vacancy ionization can be precisely regulated, ultimately realizing the monolithic dual-mode device. At 0 V bias, the device functions as a fast-response self-driven photodetector with stable optical communication capabilities, achieving 360° quasi-omnidirectional photodetection. Upon applying a bias voltage, the operating mode switches to a synaptic device, which successfully simulates brain-like paired-pulse facilitation, short-/long-term plasticity processes, and learning/forgetting behaviors. The device demonstrates an exceptionally high UV/visible rejection ratio of 1.29 × 10<sup>4</sup>, coupled with an ultra-low dark current of less than 1 pA. Furthermore, this device has a low power consumption of 2.5 × 10<sup>−14</sup> J per synaptic event, indicating an energy efficiency comparable to synaptic processes in the human brain. Moreover, nonlinear photoconductivity lets the device become a neuromorphic sensor for preprocessing images, enhancing recognition accuracy. Importantly, by leveraging the long-memory characteristic of the devices in open-circuit voltage mode, the devices have been successfully applied to guide humanoid robots in performing direction distinguishing and motion learning. This work provides new insights into the integrated manufacturing of multifunctional monolithic devices and foresees their immense potential in upcoming advanced, low-power neuromorphic computing systems.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile photonics reconfigurable memristor with dynamically allocated neurons and synapses functions 具有动态分配神经元和突触功能的简易光子可重构忆阻器
Light-Science & Applications Pub Date : 2025-08-12 DOI: 10.1038/s41377-025-01928-5
Zhenyu Zhou, Lulu Wang, Gongjie Liu, Yuchen Li, Zhiyuan Guan, Zixuan Zhang, Pengfei Li, Yifei Pei, Jianhui Zhao, Jiameng Sun, Yahong Wang, Yiduo Shao, Xiaobing Yan
{"title":"A facile photonics reconfigurable memristor with dynamically allocated neurons and synapses functions","authors":"Zhenyu Zhou, Lulu Wang, Gongjie Liu, Yuchen Li, Zhiyuan Guan, Zixuan Zhang, Pengfei Li, Yifei Pei, Jianhui Zhao, Jiameng Sun, Yahong Wang, Yiduo Shao, Xiaobing Yan","doi":"10.1038/s41377-025-01928-5","DOIUrl":"https://doi.org/10.1038/s41377-025-01928-5","url":null,"abstract":"<p>The dynamic neural network function realized by reconfigurable memristors to implement artificial neurons and synapses is an effective method to complete the next generation of neuromorphic computing. However, due to the limitation of reconfiguration conditions, there are inconsistencies in the turn-on voltage and operating current before and after the reconfiguration of neuromorphic devices, which leads to huge difficulties in hardware application development and is an urgent problem to be solved. In this work, we introduced light as a regulatory means in the memristor and achieved the reconfiguration of volatile (endurance ~10<sup>6</sup> cycles) and non-volatile (retention ~10<sup>4</sup> s) characteristics with a unified working parameter through the photoelectric coupling mode. The switching voltage of the device can be controlled 100% by this method without any limiting current. This will allow neurons and synapses to be dynamically allocated on demand. We completed the verification such as Morse code decoding, Poisson coded image recognition, denoising in the image recognition process, and intelligent traffic signal recognition hardware system under different work modes. It is verified that the device can dynamically adjust the neuromorphic according to needs, providing a new idea for the further integration of neuromorphic computing in the future.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信