320 GHz photonic-electronic analogue-to-digital converter (ADC) exploiting Kerr soliton microcombs

IF 23.4 Q1 OPTICS
Dengyang Fang, Daniel Drayss, Huanfa Peng, Grigory Lihachev, Christoph Füllner, Artem Kuzmin, Pablo Marin-Palomo, Patrick Matalla, Prashanta Kharel, Rui Ning Wang, Johann Riemensberger, Mian Zhang, Jeremy Witzens, J. Christoph Scheytt, Wolfgang Freude, Sebastian Randel, Tobias J. Kippenberg, Christian Koos
{"title":"320 GHz photonic-electronic analogue-to-digital converter (ADC) exploiting Kerr soliton microcombs","authors":"Dengyang Fang, Daniel Drayss, Huanfa Peng, Grigory Lihachev, Christoph Füllner, Artem Kuzmin, Pablo Marin-Palomo, Patrick Matalla, Prashanta Kharel, Rui Ning Wang, Johann Riemensberger, Mian Zhang, Jeremy Witzens, J. Christoph Scheytt, Wolfgang Freude, Sebastian Randel, Tobias J. Kippenberg, Christian Koos","doi":"10.1038/s41377-025-01778-1","DOIUrl":null,"url":null,"abstract":"<p>Kerr soliton microcombs have the potential to disrupt a variety of applications such as ultra-high-speed optical communications, ultra-fast distance measurements, massively parallel light detection and ranging (LiDAR) or high-resolution optical spectroscopy. Similarly, ultra-broadband photonic-electronic signal processing could also benefit from chip-scale frequency comb sources that offer wideband optical emission along with ultra-low phase noise and timing jitter. However, while photonic analogue-to-digital converters (ADC) based on femtosecond lasers have been shown to overcome the jitter-related limitations of electronic oscillators, the potential of Kerr combs in photonic-electronic signal processing remains to be explored. In this work, we demonstrate a microcomb-based photonic-electronic ADC that combines a high-speed electro-optic modulator with a Kerr comb for spectrally sliced coherent detection of the generated optical waveform. The system offers a record-high acquisition bandwidth of 320 GHz, corresponding to an effective sampling rate of at least 640 GSa/s. In a proof-of-concept experiment, we demonstrate the viability of the concept by acquiring a broadband analogue data signal comprising different channels with centre frequencies between 24 GHz and 264 GHz, offering bit error ratios (BER) below widely used forward-error-correction (FEC) thresholds. To the best of our knowledge, this is the first demonstration of a microcomb-based ADC, leading to the largest acquisition bandwidth demonstrated for any ADC so far.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"105 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01778-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kerr soliton microcombs have the potential to disrupt a variety of applications such as ultra-high-speed optical communications, ultra-fast distance measurements, massively parallel light detection and ranging (LiDAR) or high-resolution optical spectroscopy. Similarly, ultra-broadband photonic-electronic signal processing could also benefit from chip-scale frequency comb sources that offer wideband optical emission along with ultra-low phase noise and timing jitter. However, while photonic analogue-to-digital converters (ADC) based on femtosecond lasers have been shown to overcome the jitter-related limitations of electronic oscillators, the potential of Kerr combs in photonic-electronic signal processing remains to be explored. In this work, we demonstrate a microcomb-based photonic-electronic ADC that combines a high-speed electro-optic modulator with a Kerr comb for spectrally sliced coherent detection of the generated optical waveform. The system offers a record-high acquisition bandwidth of 320 GHz, corresponding to an effective sampling rate of at least 640 GSa/s. In a proof-of-concept experiment, we demonstrate the viability of the concept by acquiring a broadband analogue data signal comprising different channels with centre frequencies between 24 GHz and 264 GHz, offering bit error ratios (BER) below widely used forward-error-correction (FEC) thresholds. To the best of our knowledge, this is the first demonstration of a microcomb-based ADC, leading to the largest acquisition bandwidth demonstrated for any ADC so far.

Abstract Image

利用克尔孤子微梳的320 GHz光电子模数转换器(ADC)
克尔孤子微梳有可能颠覆各种应用,如超高速光通信、超高速距离测量、大规模平行光探测和测距(LiDAR)或高分辨率光谱学。同样,超宽带光电子信号处理也可以受益于芯片级频率梳源,它提供宽带光发射以及超低相位噪声和时序抖动。然而,虽然基于飞秒激光的光子模数转换器(ADC)已经被证明可以克服电子振荡器的抖动相关限制,但克尔梳在光电子信号处理中的潜力仍有待探索。在这项工作中,我们展示了一个基于微梳的光电子ADC,它结合了高速电光调制器和克尔梳,用于对产生的光波形进行频谱切片相干检测。该系统提供了创纪录的320 GHz采集带宽,相当于至少640 GSa/s的有效采样率。在概念验证实验中,我们通过获取中心频率在24 GHz和264 GHz之间的不同信道的宽带模拟数据信号来证明该概念的可行性,并提供低于广泛使用的前向纠错(FEC)阈值的误差率(BER)。据我们所知,这是基于微梳的ADC的首次演示,导致迄今为止任何ADC演示的最大采集带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信