10-km passive drone detection using broadband quantum compressed sensing imaging

IF 20.6 Q1 OPTICS
Shuxiao Wu, Jianyong Hu, Jiaqing Ge, Yanshan Fan, Zhexin Li, Liu Yang, Kai Song, Jiazhao Tian, Zhixing Qiao, Guosheng Feng, Xilong Liang, Changgang Yang, Ruiyun Chen, Chengbing Qin, Guofeng Zhang, Liantuan Xiao, Suotang Jia
{"title":"10-km passive drone detection using broadband quantum compressed sensing imaging","authors":"Shuxiao Wu, Jianyong Hu, Jiaqing Ge, Yanshan Fan, Zhexin Li, Liu Yang, Kai Song, Jiazhao Tian, Zhixing Qiao, Guosheng Feng, Xilong Liang, Changgang Yang, Ruiyun Chen, Chengbing Qin, Guofeng Zhang, Liantuan Xiao, Suotang Jia","doi":"10.1038/s41377-025-01878-y","DOIUrl":null,"url":null,"abstract":"<p>Remote passive drone detection in the presence of strong background noise is challenging, since they are point objects and cannot be recognized by their contour detection. In this study, we introduce a new passive single-photon dynamic imaging method using quantum compressed sensing. This method utilizes the inherent randomness of photon radiation and detection to construct a compressive imaging system. It captures the broadband dynamic features of the point object through sparse photon detection, achieving a detectable bandwidth up to 2.05 GHz, which is significantly higher than current photon-counting imaging techniques. The method also shows excellent noise resistance, achieving high-quality imaging with a signal-to-background ratio of 1/332. This technique significantly enhances the use of single-photon imaging in real-world applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01878-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Remote passive drone detection in the presence of strong background noise is challenging, since they are point objects and cannot be recognized by their contour detection. In this study, we introduce a new passive single-photon dynamic imaging method using quantum compressed sensing. This method utilizes the inherent randomness of photon radiation and detection to construct a compressive imaging system. It captures the broadband dynamic features of the point object through sparse photon detection, achieving a detectable bandwidth up to 2.05 GHz, which is significantly higher than current photon-counting imaging techniques. The method also shows excellent noise resistance, achieving high-quality imaging with a signal-to-background ratio of 1/332. This technique significantly enhances the use of single-photon imaging in real-world applications.

Abstract Image

利用宽带量子压缩传感成像进行10公里被动无人机探测
在强背景噪声的情况下,无人机的远程被动检测具有挑战性,因为它们是点目标,无法通过轮廓检测来识别。在这项研究中,我们引入了一种新的基于量子压缩感知的被动单光子动态成像方法。该方法利用光子辐射和探测的固有随机性来构建压缩成像系统。它通过稀疏光子探测捕捉点目标的宽带动态特征,可探测带宽高达2.05 GHz,显著高于目前的光子计数成像技术。该方法还具有优异的抗噪声性能,实现了高质量的成像,信背景比为1/332。该技术显著提高了单光子成像在实际应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信