Tianshu Xu, Ran Wei, Subhash C. Singh, Chunlei Guo
{"title":"15-Fold increase in solar thermoelectric generator performance through femtosecond-laser spectral engineering and thermal management","authors":"Tianshu Xu, Ran Wei, Subhash C. Singh, Chunlei Guo","doi":"10.1038/s41377-025-01916-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01916-9","url":null,"abstract":"<p>Solar thermoelectric generators (STEGs) have recently gained increasing attention. However, their widespread adoption has been limited due to the lack of high-efficiency thermoelectric materials and compact heat sinks for effective heat dissipation. To address these issues, we develop a spectral engineering and thermal management strategy that significantly increases STEG power generation by 15 times with only a 25% increase in weight. At the hot side, we transform a regular tungsten (W) to a selective solar absorber (W-SSA) through a femtosecond (fs)-laser processing technique, which enhances the solar absorption while minimizing the IR emissivity, obtaining >80% absorption efficiency at elevated temperatures. We also design a greenhouse chamber for W-SSA and achieved >40% reduction in convective heat loss. At the cold side, we apply the fs laser processing to transform a regular aluminum (Al) to a super-high-capacity micro-structured heat dissipator (μ-dissipator), which improves the cold-side heat dissipation through both radiation and convection, achieving twice the cooling performance of a regular Al heat dissipator. These spectral engineering and thermal management increase the temperature difference across the STEG, resulting in a substantial increase in output power. The high-efficiency STEG can find a wide range of applications, such as wireless sensor networks, wearable electronics, and medical sensors.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irina A. Okkelman, Hang Zhou, Sergey M. Borisov, Angela C. Debruyne, Austin E. Y. T. Lefebvre, Marcelo Leomil Zoccoler, Linglong Chen, Bert Devriendt, Ruslan I. Dmitriev
{"title":"Visualizing the internalization and biological impact of nanoplastics in live intestinal organoids by Fluorescence Lifetime Imaging Microscopy (FLIM)","authors":"Irina A. Okkelman, Hang Zhou, Sergey M. Borisov, Angela C. Debruyne, Austin E. Y. T. Lefebvre, Marcelo Leomil Zoccoler, Linglong Chen, Bert Devriendt, Ruslan I. Dmitriev","doi":"10.1038/s41377-025-01949-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01949-0","url":null,"abstract":"<p>Increased micro- and nanoplastic (MNP) pollution poses significant health risks, yet the mechanisms of their accumulation and effects on absorptive tissues remain poorly understood. Addressing this knowledge gap requires tractable models coupled to dynamic live cell imaging methods, enabling multi-parameter single cell analysis. We report a new method combining adult stem cell-derived small intestinal organoid cultures with live fluorescence lifetime imaging microscopy (FLIM) to study MNP interactions with gut epithelium. To facilitate this, we optimized live imaging of porcine and mouse small intestinal organoids with an ‘apical-out’ topology. Subsequently, we produced a set of pristine MNPs based on PMMA and PS (<200 nm, doped with deep-red fluorescent dye) and evaluated their interaction with organoids displaying controlled epithelial polarity. We found that nanoparticles interacted differently with apical and basal membranes of the organoids and showed a species-specific pattern of cellular uptake. Using a phasor analysis approach, we demonstrate improved sensitivity of FLIM over conventional intensity-based microscopy. The resulting ‘fluorescence lifetime barcoding’ enabled distinguishing of different types of MNP and their interaction sites within organoids. Finally, we studied short (1 day)- and long (3 day)-term exposure effects of PMMA and PS-based MNPs on mitochondrial function, total cell energy budget and epithelial inflammation. We found that even pristine MNPs could disrupt chemokine production and mitochondrial membrane potential in intestinal epithelial cells. The presented FLIM approach will advance the study of MNP toxicity, their biological impacts on gastrointestinal tissue and enable the tracing of other fluorescent nanoparticles in live organoid and 3D ex vivo systems.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional Yb-doped fiber with a bat-type refractive index distribution for beyond kilowatt all-fiber single-frequency laser amplification","authors":"Wei Li, Wei Liu, Yu Deng, Yisha Chen, Huan Yang, Qi Chen, Junjie Zheng, Hu Xiao, Zilun Chen, Zhiyong Pan, Pengfei Ma, Zefeng Wang, Lei Si, Shanhui Xu, Jinbao Chen","doi":"10.1038/s41377-025-01956-1","DOIUrl":"https://doi.org/10.1038/s41377-025-01956-1","url":null,"abstract":"<p>High-power single-frequency fiber lasers with diffraction-limited spots are indispensable for a wide range of photonic applications and are particularly in advanced detection and sensing technologies. However, the simultaneous achievement of kilowatt-level output power and diffraction-limited beam quality has remained elusive in all reported single-frequency fiber laser systems to date, primarily due to limitations imposed by the stimulated Brillouin scattering (SBS) effect and transverse mode instability (TMI) effect. In this study, we demonstrate the design and manufacturing of an ultra-low numerical aperture (NA) functional Yb-doped fiber featuring a bat-type refractive index distribution, specifically engineered for single-frequency laser amplification. In the fabrication, we implemented multiple chelate gas filling and particle deposition iterations, leading to an active fiber with a bat-type refractive index distribution. The unique capabilities of this large mode area and high-order modes leakage fiber (HOMLF) were demonstrated by stably amplifying the single-frequency laser with more than one kilowatt output power and near single mode beam quality (M<sub>x</sub><sup>2</sup> = 1.10, M<sub>x</sub><sup>2</sup> = 1.18) for the first time. This fiber design advances the leap forward in single-frequency fiber lasers, which could contribute as a novel and efficient laser amplification technique for the next generation of gravitational wave detection systems.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144819324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrahigh-throughput single-pixel complex-field microscopy with frequency-comb acousto-optic coherent encoding (FACE)","authors":"Daixuan Wu, Yuecheng Shen, Zhongzheng Zhu, Tijian Li, Jiawei Luo, Zhengyang Wang, Jiaming Liang, Zhiling Zhang, Yunhua Yao, Dalong Qi, Lianzhong Deng, Zhenrong Sun, Meng Liu, Zhi-Chao Luo, Shian Zhang","doi":"10.1038/s41377-025-01931-w","DOIUrl":"https://doi.org/10.1038/s41377-025-01931-w","url":null,"abstract":"<p>Single-pixel imaging (SPI) is a promising technology for optical imaging beyond the visible spectrum, where commercial cameras are expensive or unavailable. However, limitations such as slow pattern projection rates and time-consuming reconstruction algorithms hinder its throughput for real-time imaging. Consequently, conventional SPI is inadequate for high-speed, high-resolution tasks. To address these challenges, we developed an ultrahigh-throughput single-pixel complex-field microscopy (SPCM) system utilizing frequency-comb acousto-optic coherent encoding (FACE). This system enables real-time complex-field monitoring in the non-visible domain. Operating at 1030 nm, our system achieves a record-high space-bandwidth-time product (SBP-T) of 1.3 × 10<sup>7</sup>, surpassing previous SPCM (~10<sup>4</sup>), SPI (~10<sup>5</sup>), and even certain types of commercial near-infrared cameras (~10<sup>6</sup>). It supports real-time streaming at 1000 Hz with a frame size of 80 × 81 pixels and a lateral resolution of 3.76 μm across an approximately 300 μm field of view. We validated the system by imaging dynamic transparent scenes, including microfluidics, live microorganisms, chemical reactions, as well as imaging through scattering media. This advancement offers a superior solution for high-speed, high-resolution complex-field imaging beyond the visible spectrum, significantly enhancing SPI performance across various applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"143 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical-gain-assisted circularly polarized photodetection based on chiral plasmonic metamaterials","authors":"Chenghao Chen, Zhenhai Yang, Tianyi Hang, Yining Hao, Yijing Chen, Chengzhuang Zhang, Jiong Yang, Xiaoyi Liu, Xiaofeng Li, Guoyang Cao","doi":"10.1038/s41377-025-01932-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01932-9","url":null,"abstract":"<p>Circularly polarized light (CPL) detectors based on chiral organic materials or inorganic structures hold great potential for highly integrated on-chip applications; however, these devices usually have to seek an optimal balance among the asymmetry factor (<i>g</i>), responsivity (<i>R</i>), and stability. Here, we aim to break such a limitation by combining chiral inorganic plasmonic metamaterials with electrical gain, by which one can enhance both <i>g</i> and <i>R</i> while simultaneously securing the stability. We demonstrate a CPL detector based on “S”-shaped chiral Ag nanowires/InAs/Si heterostructures, where the meticulous construction of the “S”-shaped chiral Ag nanowires with the overlaying InAs channel enables a substantial absorption asymmetry in InAs due to differentiated localized surface plasmon resonances excited by left- and right-circularly polarized (LCP and RCP) light. The InAs serves as a conductive channel, achieving significant electrical gain through photoconductive effects assisted by photogating, gate modulation, and trap effects. The proposed inorganic stable device exhibits a high electrical <i>g</i> of ~1.56, an ultra-high <i>R</i> of ~33,900 A W<sup>−1</sup>, a large specific detectivity of ~1.8 × 10<sup>11</sup> Jones, and an ultra-short response time of ~23 ns, with the high performance achieved in a broad spectral range from 2 μm to 2.8 μm. Ultimately, by encoding ASCII code 1 and 0 onto LCP and RCP light, respectively, and leveraging the device’s heightened discrimination and response performance to these polarizations, we demonstrate a simple yet key-free optical encryption communication scheme at the device level, highlighting its extensive potential for system-level applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Che-Yung Shen, Paolo Batoni, Xilin Yang, Jingxi Li, Kun Liao, Jared Stack, Jeff Gardner, Kevin Welch, Aydogan Ozcan
{"title":"Broadband unidirectional visible imaging using wafer-scale nano-fabrication of multi-layer diffractive optical processors","authors":"Che-Yung Shen, Paolo Batoni, Xilin Yang, Jingxi Li, Kun Liao, Jared Stack, Jeff Gardner, Kevin Welch, Aydogan Ozcan","doi":"10.1038/s41377-025-01971-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01971-2","url":null,"abstract":"<p>We present a broadband and polarization-insensitive unidirectional imager that operates at the visible part of the spectrum, where image formation occurs in one direction, while in the opposite direction, it is blocked. This approach is enabled by deep learning-driven diffractive optical design with wafer-scale nano-fabrication using high-purity fused silica to ensure optical transparency and thermal stability. Our design achieves unidirectional imaging across three visible wavelengths (covering red, green, and blue parts of the spectrum), and we experimentally validated this broadband unidirectional imager by creating high-fidelity images in the forward direction and generating weak, distorted output patterns in the backward direction, in alignment with our numerical simulations. This work demonstrates wafer-scale production of diffractive optical processors, featuring 16 levels of nanoscale phase features distributed across two axially aligned diffractive layers for visible unidirectional imaging. This approach facilitates mass-scale production of ~0.5 billion nanoscale phase features per wafer, supporting high-throughput manufacturing of hundreds to thousands of multi-layer diffractive processors suitable for large apertures and parallel processing of multiple tasks. Beyond broadband unidirectional imaging in the visible spectrum, this study establishes a pathway for artificial-intelligence-enabled diffractive optics with versatile applications, signaling a new era in optical device functionality with industrial-level, massively scalable fabrication.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatsuya Osaki, W. David Lee, Xiang Zhang, Rebecca E. Zubajlo, Mercedes Balcells-Camps, Elazer R. Edelman, Brian W. Anthony, Mriganka Sur, Peter T. C. So
{"title":"Multi-photon, label-free photoacoustic and optical imaging of NADH in brain cells","authors":"Tatsuya Osaki, W. David Lee, Xiang Zhang, Rebecca E. Zubajlo, Mercedes Balcells-Camps, Elazer R. Edelman, Brian W. Anthony, Mriganka Sur, Peter T. C. So","doi":"10.1038/s41377-025-01895-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01895-x","url":null,"abstract":"<p>Label-free detection of biological events at single-cell resolution in the brain can non-invasively capture brain status for medical diagnosis and basic neuroscience research. NADH is an universal coenzyme that not only plays a central role in cellular metabolism but may also be used as a biomarker to capture metabolic processes in brain cells and structures. We have developed a new label-free, multiphoton photoacoustic microscope (LF-MP-PAM) with a near-infrared femtosecond laser to observe endogenous NAD(P)H in living cells. The imaging depth of NAD(P)H in tissues with all-optical methods is limited to ~100 μm in brain tissue by the strong absorption of the near-ultraviolet fluorescence. Here, acoustic detection of the thermal signature of multi-photon (three-photon) excitation of NAD(P)H, a low quantum yield fluorophore, allows detection at an unprecedented depth while the focused excitation ensures high spatial resolution. We validated the photoacoustic detection of NAD(P)H by monitoring an increase in intracellular NAD(P)H in HEK293T cells and HepG2 cells incubated in NADH solution. We also demonstrated the detection of endogenous NAD(P)H photoacoustic signals in brain slices to 700 μm depth and in cerebral organoids to 1100 μm depth. Finally, we developed and demonstrated simultaneous photoacoustic and optical imaging of NAD(P)H in brain cells with a real-time image acquisition and processing pipeline. This approach could open a new door to monitor brain metabolic changes during development and disease, and changes due to neuronal activity, at single-cell level deep in the brains of both humans and animals.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Roy, Beicheng Lou, Shanhui Fan, Alexandre Mayer, Michaël Lobet
{"title":"Twist-Induced Beam Steering and Blazing Effects in Photonic Crystal Devices","authors":"Nicolas Roy, Beicheng Lou, Shanhui Fan, Alexandre Mayer, Michaël Lobet","doi":"10.1038/s41377-025-01942-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01942-7","url":null,"abstract":"<p>Twisted bilayer photonic crystals introduce a twist between two stacked photonic crystal slabs, enabling strong modulation of their electromagnetic properties. The change in the twist angle strongly influences the resonant frequencies and available propagating diffraction orders with applications including sensing, lasing, slow light or wavefront engineering. In this work, we design and analyze twisted bilayer crystals capable of steering light in a direction controlled by the twist angle. To achieve beam steering, the device efficiently routes input power into a single, twist-dependent, transmitted diffraction order. The outgoing light then follows the orientation of this diffraction order, externally controlled by the twist angle. Our study shows, using systematic exploration of the design space, how the device resembles blazed gratings by effectively canceling the undesired diffraction orders. The optimized devices exhibit a shared slant dependent on the selected diffraction order and that proves robust to the twist angle. Our analysis is supported by a classical blazing model and a data-oriented statistical analysis. The data-oriented approach is steered by high-efficiency heuristic optimization method, which enabled the design of optimized devices demonstrating an efficiency above 90% across twist angles ranging from 0 to 30° for both TE and TM polarizations. Extending the optimization to include left- and right-handed polarizations yields overall accuracy nearing 90% when averaged across the entire 0 to 60° control range. Finally, with the identification of the blazing effect in this initially black box structure, we show one can consider simpler design for a first prototype.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144792645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheng Yi, Zejing Wang, Yangyang Shi, Shuai Wan, Jiao Tang, Wanlin Hu, Zile Li, Yongquan Zeng, Qinghua Song, Zhongyang Li
{"title":"Creating topological exceptional point by on-chip all-dielectric metasurface","authors":"Cheng Yi, Zejing Wang, Yangyang Shi, Shuai Wan, Jiao Tang, Wanlin Hu, Zile Li, Yongquan Zeng, Qinghua Song, Zhongyang Li","doi":"10.1038/s41377-025-01955-2","DOIUrl":"https://doi.org/10.1038/s41377-025-01955-2","url":null,"abstract":"<p>Classified as a non-Hermitian system, topological metasurface is one of the ideal platforms for exploring a striking property, that is, the exceptional point (EP). Recently, creating and encircling EP in metasurfaces has triggered various progressive functionalities, including polarization control and optical holographic encoding. However, existing topological metasurfaces mostly rely on plasmonic materials, which introduce inevitable ohmic losses and limit their compatibility with mainstream all-dielectric meta-devices. Additionally, conventional free-space configurations also hinder the integration of multiple meta-devices in compact platforms. Here, an on-chip topological metasurface is experimentally demonstrated to create and engineer the topological phase encircling the EP in all-dielectric architecture. By massively screening the Si meta-atom geometry on the Si<sub>3</sub>N<sub>4</sub> waveguide, a 2π-topological phase shift is obtained by encircling the EP. Through combining with the Pancharatnam-Berry (PB) phase, we decouple the orthogonal circular polarization channels and unfold the independent encoding freedom for different holographic generations. As a proof of concept, the proposed on-chip topological metasurface enables floating holographic visualizations in real-world scenarios, functioning as practical augmented reality (AR) functionalities. Such the all-dielectric on-chip scheme eliminates ohmic losses and enables compatible integration with other on-chip meta-devices, thus suggesting promising applications in next-generation AR devices, multiplexing information storage, and advanced optical displays.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144778570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikhil Jayakumar,Luis E Villegas-Hernández,Weisong Zhao,Hong Mao,Firehun T Dullo,Jean-Claude Tinguely,Krizia Sagini,Alicia Llorente,Balpreet Singh Ahluwalia
{"title":"Chip-based label-free incoherent super-resolution optical microscopy.","authors":"Nikhil Jayakumar,Luis E Villegas-Hernández,Weisong Zhao,Hong Mao,Firehun T Dullo,Jean-Claude Tinguely,Krizia Sagini,Alicia Llorente,Balpreet Singh Ahluwalia","doi":"10.1038/s41377-025-01914-x","DOIUrl":"https://doi.org/10.1038/s41377-025-01914-x","url":null,"abstract":"The photo-kinetics of fluorescent molecules have enabled the circumvention of the far-field optical diffraction limit. Despite its enormous potential, the necessity to label the sample may adversely influence the delicate biology under investigation. Thus, continued development efforts are needed to surpass the far-field label-free diffraction barrier. The statistical similarity or finite coherence of the scattered light off the sample in label-free mode hinders the application of existing super-resolution methods based on incoherent fluorescence imaging. In this article, we present physics and propose a methodology to circumvent this challenge by exploiting the photoluminescence (PL) of silicon nitride waveguides for near-field illumination of unlabeled samples. The technique is abbreviated EPSLON, Evanescently decaying Photoluminescence Scattering enables Label-free Optical Nanoscopy. We demonstrate that such an illumination has properties that mimic the photo-kinetics of nano-sized fluorescent molecules, i.e., such an illumination permits incoherence between the scattered fields from various locations on the sample plane. Thus, the illumination scheme enables the development of a far-field label-free incoherent imaging system that is linear in intensity and stable over time, thereby permitting the application of techniques like structured illumination microscopy (SIM) and intensity-fluctuation-based optical nanoscopy (IFON) in label-free mode to circumvent the diffraction limit. In this proof-of-concept work, we observed a two-point resolution of ~ 180 nm on super-resolved nanobeads and resolution improvements between 1.9× to 2.8× over the diffraction limit, as quantified using Fourier Ring Correlation (FRC), on various biological samples. We believe EPSLON is a step forward within the field of incoherent far-field label-free super-resolution microscopy that holds a key to investigating biological systems in their natural state without the need for exogenous labels.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"57 1","pages":"259"},"PeriodicalIF":0.0,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144769672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}