理学最新文献

筛选
英文 中文
Programmable electron-induced color router array 可编程电子感应彩色路由器阵列
Light-Science & Applications Pub Date : 2025-03-05 DOI: 10.1038/s41377-024-01712-x
Cheng Chi, Zhibo Dang, Yongqi Liu, Yuwei Wang, Dewen Cheng, Zheyu Fang, Yongtian Wang
{"title":"Programmable electron-induced color router array","authors":"Cheng Chi, Zhibo Dang, Yongqi Liu, Yuwei Wang, Dewen Cheng, Zheyu Fang, Yongtian Wang","doi":"10.1038/s41377-024-01712-x","DOIUrl":"https://doi.org/10.1038/s41377-024-01712-x","url":null,"abstract":"<p>The development of color routers (CRs) realizes the splitting of dichromatic components, contributing to the modulation of photon momentum that acts as the information carrier for optical information technology on the frequency and spatial domains. However, CRs with optical stimulation lack active control of photon momentum at deep subwavelength scale because of the optical diffraction limit. Here, we experimentally demonstrate an active manipulation of dichromatic photon momentum at a deep subwavelength scale via electron-induced CRs, where the CRs radiation patterns are manipulated by steering the electron impact position within 60 nm in a single nanoantenna unit. Moreover, an encrypted display device based on programmable modulation of the CR array is designed and implemented. This approach with enhanced security, large information capacity, and high-level integration at a deep subwavelength scale may find applications in photonic devices and emerging areas in quantum information technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alleviating NIR-II emission quenching in ring-fused fluorophore via manipulating dimer populations for superior fluorescence imaging 通过操纵二聚体群体获得优越的荧光成像,减轻环融合荧光团中NIR-II发射猝灭
Light-Science & Applications Pub Date : 2025-03-04 DOI: 10.1038/s41377-025-01787-0
Xiaofei Miao, Mingxuan Jia, Xianwei Weng, Jie Zhang, Yonghui Pan, Hui Zhao, Zhongzheng Yu, Quli Fan, Wenbo Hu
{"title":"Alleviating NIR-II emission quenching in ring-fused fluorophore via manipulating dimer populations for superior fluorescence imaging","authors":"Xiaofei Miao, Mingxuan Jia, Xianwei Weng, Jie Zhang, Yonghui Pan, Hui Zhao, Zhongzheng Yu, Quli Fan, Wenbo Hu","doi":"10.1038/s41377-025-01787-0","DOIUrl":"https://doi.org/10.1038/s41377-025-01787-0","url":null,"abstract":"<p>Emission quenching resulting from fluorophore aggregation has long been a significant challenge in optimizing emission-based technologies, such as fluorescence imaging and optoelectronic devices. Alleviating this quenching in aggregates is crucial, yet progress is impeded by the limited understanding of the nature and impact of aggregates on emission. Here, we elucidate the critical role of dimeric aggregate (dimer) in alleviating second near-infrared (NIR-II, 900-1700 nm) emission quenching from ring-fused fluorophore 4F for superior fluorescence imaging. Spectral decomposition and molecular dynamics simulations demonstrate the predominance of dimer populations in 4F aggregates. Notably, dimers exhibit significantly weaker emission but intense intermolecular nonradiative (<i>inter</i>NR) decay compared to monomers, as demonstrated by ultrafast spectra and quantum calculation. Therefore, the predominant population of dimers with weak emission and pronounced <i>inter</i>NR feature underlies the emission quenching in 4F aggregates. This discovery guides the preparation of ultrabright NIR-II 4F nanofluorophore (4F NP3s) by decreasing dimer populations, which show 5-fold greater NIR-II brightness than indocyanine green, enabling superior resolution in visualizing blood vessels. This work offers valuable insights into aggregation-caused quenching, with broad implications extending far beyond NIR-II fluorescence imaging.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chip-integrated quantum signature network over 200 km 超过200公里的芯片集成量子签名网络
Light-Science & Applications Pub Date : 2025-03-04 DOI: 10.1038/s41377-025-01775-4
Yongqiang Du, Bing-Hong Li, Xin Hua, Xiao-Yu Cao, Zhengeng Zhao, Feng Xie, Zhenrong Zhang, Hua-Lei Yin, Xi Xiao, Kejin Wei
{"title":"Chip-integrated quantum signature network over 200 km","authors":"Yongqiang Du, Bing-Hong Li, Xin Hua, Xiao-Yu Cao, Zhengeng Zhao, Feng Xie, Zhenrong Zhang, Hua-Lei Yin, Xi Xiao, Kejin Wei","doi":"10.1038/s41377-025-01775-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01775-4","url":null,"abstract":"<p>The development of quantum networks is paramount towards practical and secure communications. Quantum digital signatures (QDS) offer an information-theoretically secure solution for ensuring data integrity, authenticity, and non-repudiation, rapidly growing from proof-of-concept to robust demonstrations. However, previous QDS systems relied on expensive and bulky optical equipment, limiting large-scale deployment and reconfigurable networking construction. Here, we introduce and verify a chip-based QDS network, placing the complicated and expensive measurement devices in the central relay while each user needs only a low-cost transmitter. We demonstrate the network with a three-node setup using an integrated encoder chip and decoder chip. By developing a 1-decoy-state one-time universal hashing-QDS protocol, we achieve a maximum signature rate of 0.0414 times per second for a 1 Mbit messages over fiber distances up to 200 km, surpassing all current state-of-the-art QDS experiments. This study validates the feasibility of chip-based QDS, paving the way for large-scale deployment and integration with existing fiber infrastructure.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential of up-conversion charging for rapid and high-resolution optical storage with phosphors 利用荧光粉释放上转换充电的潜力,实现快速、高分辨率的光存储
Light-Science & Applications Pub Date : 2025-03-04 DOI: 10.1038/s41377-025-01746-9
Lu Chen, Xueqing Liu, Feng Liu, Chuan Liao, Liangliang Zhang, Jiahua Zhang, Xiao-jun Wang, Yichun Liu
{"title":"Unlocking the potential of up-conversion charging for rapid and high-resolution optical storage with phosphors","authors":"Lu Chen, Xueqing Liu, Feng Liu, Chuan Liao, Liangliang Zhang, Jiahua Zhang, Xiao-jun Wang, Yichun Liu","doi":"10.1038/s41377-025-01746-9","DOIUrl":"https://doi.org/10.1038/s41377-025-01746-9","url":null,"abstract":"<p>Current optical storage technologies utilizing phosphor media face challenges in achieving rapid and precise data recording with visible or infrared light, primarily due to the constraints of traditional charging techniques. Here, we introduce a cutting-edge method termed up-conversion charging (UCC) to address these challenges, enabling rapid and high-resolution data storage in phosphors. Our study focuses on the unique two-step ionization and non-linear charging characteristics of UCC in storage phosphors, specifically in a gallate composition Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub>:Cr<sup>3+</sup>. Remarkably, this technique enables data writing with high solution, requiring only 0.01 s of exposure per bit when utilizing a portable laser engraver equipped with visible-emitting diode lasers. The present strategy not only enhances recording efficiency but also ensures long-term data retention and superior rewritability. Moreover, we illustrate the versatility of UCC storage across various material systems through thermally- and optically-stimulated luminescence. Our outcomes highlight the transformative potential of the UCC method in advancing optical storage applications, offering significant improvements in the development of information storage solutions.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover 外封底
IF 6.4 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2025-03-01 DOI: 10.1016/S2588-9133(25)00023-7
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2588-9133(25)00023-7","DOIUrl":"10.1016/S2588-9133(25)00023-7","url":null,"abstract":"","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100325"},"PeriodicalIF":6.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143697867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thank you reviewers! 谢谢审稿人!
IF 6.4 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2025-03-01 DOI: 10.1016/j.crcon.2025.100314
{"title":"Thank you reviewers!","authors":"","doi":"10.1016/j.crcon.2025.100314","DOIUrl":"10.1016/j.crcon.2025.100314","url":null,"abstract":"","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100314"},"PeriodicalIF":6.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A large field of view 2- and 3-photon microscope 一个大视野的2和3光子显微镜
Light-Science & Applications Pub Date : 2025-02-27 DOI: 10.1038/s41377-025-01780-7
Jack Waters
{"title":"A large field of view 2- and 3-photon microscope","authors":"Jack Waters","doi":"10.1038/s41377-025-01780-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01780-7","url":null,"abstract":"<p>A new multiphoton fluorescence microscope has been developed, offering cellular resolution across a large field of view deep within biological tissues. This opens new possibilities across a range of biological sciences, particularly within neuroscience where optical approaches can reveal signaling in real time throughout an extended network of cells distributed through the brain of an awake, behaving mouse.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical sorting: past, present and future 光学分类:过去、现在和未来
Light-Science & Applications Pub Date : 2025-02-27 DOI: 10.1038/s41377-024-01734-5
Meng Yang, Yuzhi Shi, Qinghua Song, Zeyong Wei, Xiong Dun, Zhiming Wang, Zhanshan Wang, Cheng-Wei Qiu, Hui Zhang, Xinbin Cheng
{"title":"Optical sorting: past, present and future","authors":"Meng Yang, Yuzhi Shi, Qinghua Song, Zeyong Wei, Xiong Dun, Zhiming Wang, Zhanshan Wang, Cheng-Wei Qiu, Hui Zhang, Xinbin Cheng","doi":"10.1038/s41377-024-01734-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01734-5","url":null,"abstract":"<p>Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as <i>passive</i> and <i>active</i> sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3R-WS2 crystals as a breakthrough in compact entangled photon sources 3R-WS2晶体作为紧凑纠缠光子源的突破
Light-Science & Applications Pub Date : 2025-02-27 DOI: 10.1038/s41377-024-01688-8
{"title":"3R-WS2 crystals as a breakthrough in compact entangled photon sources","authors":"","doi":"10.1038/s41377-024-01688-8","DOIUrl":"https://doi.org/10.1038/s41377-024-01688-8","url":null,"abstract":"<p>In a breakthrough that promises to revolutionize quantum photonic systems, researchers have successfully demonstrated a high-performance, ultracompact polarization-entangled photon-pair source using the van der Waals-based two-dimensional 3R-WS<sub>2</sub> crystal. This achievement opens new avenues for integrated quantum technologies, paving the way for advanced applications in quantum computing, communication, and metrology.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon-triggered pyroptosis and ferroptosis dual-functional nanoplatform for cancer immunotherapy 用于癌症免疫治疗的光子触发焦亡和铁亡双功能纳米平台
Light-Science & Applications Pub Date : 2025-02-27 DOI: 10.1038/s41377-025-01757-6
Quansheng Cheng, Qingcheng Wang, Songnan Qu
{"title":"Photon-triggered pyroptosis and ferroptosis dual-functional nanoplatform for cancer immunotherapy","authors":"Quansheng Cheng, Qingcheng Wang, Songnan Qu","doi":"10.1038/s41377-025-01757-6","DOIUrl":"https://doi.org/10.1038/s41377-025-01757-6","url":null,"abstract":"<p>A dual-functional nanoplatform is demonstrated that is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. It can simultaneously achieve pyroptosis and ferroptosis under the mediation of photons for cancer immunotherapy.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信