等离子体半导体纳米结构中光学非线性的控制与增强

IF 20.6 Q1 OPTICS
Andrea Rossetti, Huatian Hu, Tommaso Venanzi, Adel Bousseksou, Federico De Luca, Thomas Deckert, Valeria Giliberti, Marialilia Pea, Isabelle Sagnes, Gregoire Beaudoin, Paolo Biagioni, Enrico Baù, Stefan A. Maier, Andreas Tittl, Daniele Brida, Raffaele Colombelli, Michele Ortolani, Cristian Ciracì
{"title":"等离子体半导体纳米结构中光学非线性的控制与增强","authors":"Andrea Rossetti, Huatian Hu, Tommaso Venanzi, Adel Bousseksou, Federico De Luca, Thomas Deckert, Valeria Giliberti, Marialilia Pea, Isabelle Sagnes, Gregoire Beaudoin, Paolo Biagioni, Enrico Baù, Stefan A. Maier, Andreas Tittl, Daniele Brida, Raffaele Colombelli, Michele Ortolani, Cristian Ciracì","doi":"10.1038/s41377-025-01783-4","DOIUrl":null,"url":null,"abstract":"<p>The efficiency of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which cannot be engineered as it is a fundamental material property. Here, we experimentally demonstrate that ultrafast optical nonlinearities in doped semiconductors can be engineered and can easily exceed those of conventional undoped dielectrics. The electron response of heavily doped semiconductors acquires in fact a hydrodynamic character that introduces nonlocal effects as well as additional nonlinear sources. Our experimental findings are supported by a comprehensive computational analysis based on the hydrodynamic model. In particular, by studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. Most importantly, we demonstrate that the maximum nonlinear efficiency as well as its spectral location can be engineered by tuning the doping level. Crucially, the maximum efficiency can be increased by almost two orders of magnitude with respect to the classical dielectric nonlinearity. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"113 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control and enhancement of optical nonlinearities in plasmonic semiconductor nanostructures\",\"authors\":\"Andrea Rossetti, Huatian Hu, Tommaso Venanzi, Adel Bousseksou, Federico De Luca, Thomas Deckert, Valeria Giliberti, Marialilia Pea, Isabelle Sagnes, Gregoire Beaudoin, Paolo Biagioni, Enrico Baù, Stefan A. Maier, Andreas Tittl, Daniele Brida, Raffaele Colombelli, Michele Ortolani, Cristian Ciracì\",\"doi\":\"10.1038/s41377-025-01783-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficiency of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which cannot be engineered as it is a fundamental material property. Here, we experimentally demonstrate that ultrafast optical nonlinearities in doped semiconductors can be engineered and can easily exceed those of conventional undoped dielectrics. The electron response of heavily doped semiconductors acquires in fact a hydrodynamic character that introduces nonlocal effects as well as additional nonlinear sources. Our experimental findings are supported by a comprehensive computational analysis based on the hydrodynamic model. In particular, by studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. Most importantly, we demonstrate that the maximum nonlinear efficiency as well as its spectral location can be engineered by tuning the doping level. Crucially, the maximum efficiency can be increased by almost two orders of magnitude with respect to the classical dielectric nonlinearity. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01783-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01783-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

介质非线性光学响应的物理限制阻碍了纳米级非线性元件在光子集成电路中的效率,而介质非线性光学响应是材料的基本特性,无法通过工程设计实现。在这里,我们通过实验证明,可以设计掺杂半导体中的超快光学非线性,并且可以很容易地超过传统未掺杂电介质的非线性。重掺杂半导体的电子响应实际上具有流体动力学特性,它引入了非局部效应和附加的非线性源。我们的实验结果得到了基于水动力模型的综合计算分析的支持。特别是,通过研究由重n掺杂InGaAs制成的等离子体纳米天线阵列随着自由载流子密度的增加而产生的三次谐波,我们区分了流体动力学和介电非线性。最重要的是,我们证明了最大非线性效率及其光谱位置可以通过调整掺杂水平来设计。至关重要的是,相对于经典的介电非线性,最大效率可以提高近两个数量级。采用支持集成波导的通用材料平台InGaAs/InP,我们的发现为未来在全半导体光子集成电路中开发等离子体非线性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control and enhancement of optical nonlinearities in plasmonic semiconductor nanostructures

Control and enhancement of optical nonlinearities in plasmonic semiconductor nanostructures

The efficiency of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which cannot be engineered as it is a fundamental material property. Here, we experimentally demonstrate that ultrafast optical nonlinearities in doped semiconductors can be engineered and can easily exceed those of conventional undoped dielectrics. The electron response of heavily doped semiconductors acquires in fact a hydrodynamic character that introduces nonlocal effects as well as additional nonlinear sources. Our experimental findings are supported by a comprehensive computational analysis based on the hydrodynamic model. In particular, by studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. Most importantly, we demonstrate that the maximum nonlinear efficiency as well as its spectral location can be engineered by tuning the doping level. Crucially, the maximum efficiency can be increased by almost two orders of magnitude with respect to the classical dielectric nonlinearity. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信