激光写入可重构光子集成电路直接耦合到单光子雪崩二极管阵列

IF 20.6 Q1 OPTICS
Giulio Gualandi, Simone Atzeni, Marco Gardina, Antonino Caime, Giacomo Corrielli, Ivan Labanca, Angelo Gulinatti, Ivan Rech, Roberto Osellame, Giulia Acconcia, Francesco Ceccarelli
{"title":"激光写入可重构光子集成电路直接耦合到单光子雪崩二极管阵列","authors":"Giulio Gualandi, Simone Atzeni, Marco Gardina, Antonino Caime, Giacomo Corrielli, Ivan Labanca, Angelo Gulinatti, Ivan Rech, Roberto Osellame, Giulia Acconcia, Francesco Ceccarelli","doi":"10.1038/s41377-025-01854-6","DOIUrl":null,"url":null,"abstract":"<p>To date, most integrated quantum photonics experiments rely on single-photon detectors operating at cryogenic temperatures coupled to photonic integrated circuits (PICs) through single-mode optical fibers. This approach presents significant challenges due to the detection complexity, as cryogenic conditions hinder the development of scalable systems. In addition, going towards fully-integrated devices or, at least, removing the optical fibers would be also advantageous to develop compact and cost-efficient solutions featuring a high number of optical modes. This work reports on the direct coupling of a PIC, fabricated by femtosecond laser writing (FLW), and a silicon single-photon avalanche diode (SPAD) array, fabricated in a custom planar technology and compatible with the operation at room temperature. The effectiveness of this solution is shown by achieving perfect coupling and a system detection efficiency as high as 41.0% at a wavelength of 561 nm, which is the highest value reported to date among both heterogeneous/hybrid integrated and directly coupled systems. We also show the robustness of the coupling to misalignments, demonstrating that costly alignment procedures are not needed. Finally, we exploit the SPAD array to characterize a reconfigurable Mach-Zehnder interferometer, i.e., the basic building block of multimode reconfigurable PICs. This solution provides a new avenue to the design and implementation of quantum photonics experiments, especially effective when compact and cost-efficient systems are needed.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"5 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-written reconfigurable photonic integrated circuit directly coupled to a single-photon avalanche diode array\",\"authors\":\"Giulio Gualandi, Simone Atzeni, Marco Gardina, Antonino Caime, Giacomo Corrielli, Ivan Labanca, Angelo Gulinatti, Ivan Rech, Roberto Osellame, Giulia Acconcia, Francesco Ceccarelli\",\"doi\":\"10.1038/s41377-025-01854-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To date, most integrated quantum photonics experiments rely on single-photon detectors operating at cryogenic temperatures coupled to photonic integrated circuits (PICs) through single-mode optical fibers. This approach presents significant challenges due to the detection complexity, as cryogenic conditions hinder the development of scalable systems. In addition, going towards fully-integrated devices or, at least, removing the optical fibers would be also advantageous to develop compact and cost-efficient solutions featuring a high number of optical modes. This work reports on the direct coupling of a PIC, fabricated by femtosecond laser writing (FLW), and a silicon single-photon avalanche diode (SPAD) array, fabricated in a custom planar technology and compatible with the operation at room temperature. The effectiveness of this solution is shown by achieving perfect coupling and a system detection efficiency as high as 41.0% at a wavelength of 561 nm, which is the highest value reported to date among both heterogeneous/hybrid integrated and directly coupled systems. We also show the robustness of the coupling to misalignments, demonstrating that costly alignment procedures are not needed. Finally, we exploit the SPAD array to characterize a reconfigurable Mach-Zehnder interferometer, i.e., the basic building block of multimode reconfigurable PICs. This solution provides a new avenue to the design and implementation of quantum photonics experiments, especially effective when compact and cost-efficient systems are needed.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01854-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01854-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,大多数集成量子光子学实验依赖于在低温下工作的单光子探测器,通过单模光纤与光子集成电路(PICs)耦合。由于检测的复杂性,低温条件阻碍了可扩展系统的发展,这种方法提出了重大挑战。此外,走向完全集成的设备,或者至少去除光纤,也有利于开发具有大量光学模式的紧凑且经济高效的解决方案。这项工作报告了飞秒激光写入(FLW)制造的PIC和硅单光子雪崩二极管(SPAD)阵列的直接耦合,该阵列采用定制平面技术制造,可在室温下兼容操作。该方案实现了完美的耦合,在561 nm波长处的系统检测效率高达41.0%,这是迄今为止在异质/混合集成和直接耦合系统中报道的最高值。我们还展示了耦合对不对准的鲁棒性,表明不需要昂贵的对准过程。最后,我们利用SPAD阵列来表征可重构Mach-Zehnder干涉仪,即多模可重构pic的基本构建块。该解决方案为量子光子学实验的设计和实现提供了一条新的途径,特别是在需要紧凑和经济高效的系统时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laser-written reconfigurable photonic integrated circuit directly coupled to a single-photon avalanche diode array

Laser-written reconfigurable photonic integrated circuit directly coupled to a single-photon avalanche diode array

To date, most integrated quantum photonics experiments rely on single-photon detectors operating at cryogenic temperatures coupled to photonic integrated circuits (PICs) through single-mode optical fibers. This approach presents significant challenges due to the detection complexity, as cryogenic conditions hinder the development of scalable systems. In addition, going towards fully-integrated devices or, at least, removing the optical fibers would be also advantageous to develop compact and cost-efficient solutions featuring a high number of optical modes. This work reports on the direct coupling of a PIC, fabricated by femtosecond laser writing (FLW), and a silicon single-photon avalanche diode (SPAD) array, fabricated in a custom planar technology and compatible with the operation at room temperature. The effectiveness of this solution is shown by achieving perfect coupling and a system detection efficiency as high as 41.0% at a wavelength of 561 nm, which is the highest value reported to date among both heterogeneous/hybrid integrated and directly coupled systems. We also show the robustness of the coupling to misalignments, demonstrating that costly alignment procedures are not needed. Finally, we exploit the SPAD array to characterize a reconfigurable Mach-Zehnder interferometer, i.e., the basic building block of multimode reconfigurable PICs. This solution provides a new avenue to the design and implementation of quantum photonics experiments, especially effective when compact and cost-efficient systems are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信