Shu Wang , Jiangling Ning , Jianyu Pu , Changjie Wei , Yuping Yuan , Songqi Yao , Yuantao Zhang , Ziwen Jing , Chenxing Xiang , Xinglong Gong , Zhi Li , Ning Hu
{"title":"Ultrastrong silk fabric ionogel-sensor for strain/ temperature/ tactile multi-mode sensing","authors":"Shu Wang , Jiangling Ning , Jianyu Pu , Changjie Wei , Yuping Yuan , Songqi Yao , Yuantao Zhang , Ziwen Jing , Chenxing Xiang , Xinglong Gong , Zhi Li , Ning Hu","doi":"10.1016/j.nanoms.2025.06.005","DOIUrl":"10.1016/j.nanoms.2025.06.005","url":null,"abstract":"<div><div>Ionogels have demonstrated substantial applications in smart wearable systems, soft robotics, and biomedical engineering due to the exceptional ionic conductivity and optical transparency. However, achieving ionogels with desirable mechanical properties, environmental stability, and multi-mode sensing remains challenging. Here, we propose a simple strategy for the fabrication of multifunctional silk fabric-based ionogels (BSFIGs). The resulting fabric ionogels exhibits superior mechanical properties, with high tensile strength (11.3 MPa) and work of fracture (2.53 MJ/m<sup>3</sup>). And its work of fracture still has 1.42 MJ/m<sup>3</sup> as the notch increased to 50 %, indicating its crack growth insensitivity. These ionogels can be used as sensors for strain, temperature, and tactile multi-mode sensing, demonstrating a gauge factor of 1.19 and a temperature coefficient of resistance of −3.17/°C<sup>-1</sup>. Furthermore, these ionogels can be used for the detection of different roughness and as touch screens. The ionogels also exhibit exceptional optical transmittance and environmental stability even at −80 °C. Our scalable fabrication process broadens the application potential of these multifunctional ionogels in diverse fields, from smart systems to extreme environments.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 316-325"},"PeriodicalIF":9.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144672503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simin Sun , Yuan Zhang , Qiyue Gao , Nana Zhang , PingAn Hu , Wei Feng
{"title":"ZnAl-LDH film for self-powered ultraviolet photodetection","authors":"Simin Sun , Yuan Zhang , Qiyue Gao , Nana Zhang , PingAn Hu , Wei Feng","doi":"10.1016/j.nanoms.2024.05.001","DOIUrl":"10.1016/j.nanoms.2024.05.001","url":null,"abstract":"<div><div>Self-powered photoelectrochemical-type (PEC) ultraviolet photodetectors (UV PDs) have been rapidly developed owing to their low-cost fabrication and good photodetection. However, achieving high-performance and self-powered PEC UV PDs based on an individual material is still challenging. Therefore, developing more wide bandgap semiconductors for high-performance PEC UV PDs is attractive. Here, we demonstrate that ZnAl-LDH is suitable for self-powered PEC UV PDs with high responsivity and excellent wavelength selectivity for the first time. The responsivity is 29.25 mA/W (254 nm irradiation) and the UV/visible rejection ratio is 1037, surpassing most PEC UV PDs. Furthermore, the PEC UV PDs have fast response, good stability, and underwater optical communication capability. This work offers more chances for the development of high-performance PEC UV PDs and demonstrates the potential application of ZnAl-LDH in underwater optoelectronic devices.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 377-382"},"PeriodicalIF":9.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141131539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The integration of microelectronic and photonic circuits on a single silicon chip for high-speed and low-power optoelectronic technology","authors":"Rajeev Gupta , Ajay Kumar , Manoj Kumar , Rajesh Singh , Anita Gehlot , Purnendu Shekhar Pandey , Neha Yadav , Kailash Pandey , Ashish Yadav , Neha Gupta , Ranjeet Brajpuriya , Shalendra Kumar , Ajay Singh Verma , Tanuj Kumar , Yongling Wu , Zheng Hongyu , Abhijit Biswas , Ajay Mittal , Aniruddha Mondal , Romanov Oleksandr Ivanovich","doi":"10.1016/j.nanoms.2024.04.011","DOIUrl":"10.1016/j.nanoms.2024.04.011","url":null,"abstract":"<div><div>The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge. However, in recent years, the area of silicon photonics has experienced remarkable advancements and notable leaps in performance. The performance of silicon on insulator (SOI) based photonic devices, such as fast silicon optical modulators, photonic transceivers, optical filters, etc., have been discussed. This would be a step forward in creating standalone silicon photonic devices, strengthening the possibility of single on-chip nanophotonic integrated circuits. Suppose an integrated silicon photonic chip is designed and fabricated. In that case, it might drastically modify these combined photonic component costs, power consumption, and size, bringing substantial, perhaps revolutionary, changes to the next-generation communications sector. Yet, the monolithic integration of photonic and electrical circuitry is a significant technological difficulty. A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions. The processing limitations connected to the current process flow, the process generation (sometimes referred to as lithography node generation), and packaging requirements are a few of these factors to consider. This review highlights recent developments in integrated silicon photonic devices and their proven applications, including but not limited to photonic waveguides, photonic amplifiers and filters, on-chip photonic transceivers, and the state-of-the-art of silicon photonic in multidimensional quantum systems. The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 305-315"},"PeriodicalIF":9.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dezhi Jiao , Chengbao Liu , Yujie Qiang , Shuoqi Li , Cong Sun , Peimin Hou , Lanyue Cui , Rongchang Zeng
{"title":"Ni–Zn bimetal-organic framework nanoprobes reinforced polymeric coating to achieve dual-responsive warning of coating damage and interfacial corrosion","authors":"Dezhi Jiao , Chengbao Liu , Yujie Qiang , Shuoqi Li , Cong Sun , Peimin Hou , Lanyue Cui , Rongchang Zeng","doi":"10.1016/j.nanoms.2024.03.009","DOIUrl":"10.1016/j.nanoms.2024.03.009","url":null,"abstract":"<div><div>Coating microdefects and localized corrosion in coating/metal system are inevitable, accelerating the degradation of metal infrastructure. Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve. Herein, we propose a robust, universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect (DIE) and ionic-recognition induced quenching effect (RIQ). The coatings with dual-responsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks (Ni–Zn-MOFs) loaded with Rhodamine B (RhB@MOFs). The initial damage to the coating causes an immediate intensification of fluorescence, while the specific ionic-recognition characteristic of RhB with Fe<sup>3+</sup> results in an evident fluorescence quenching, enabling the detection of coating damage and corrosion. Importantly, this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems. Meanwhile, electrochemical investigations indicate that the impedance values of RM/EP maintain above 10<sup>8</sup> Ω cm<sup>2</sup> even after 60 days of immersion. Therefore, the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating. This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 326-339"},"PeriodicalIF":9.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140771024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of binary and ternary MOF/carbon based composites (MOF/carbon nitride/graphene oxide) for the visible-light assisted destruction of tetracycline and textile dye","authors":"Niyaz Mohammad Mahmoodi, Seyed Behnam Bagherzadeh","doi":"10.1016/j.nanoms.2024.04.015","DOIUrl":"10.1016/j.nanoms.2024.04.015","url":null,"abstract":"<div><div>Herein, binary and ternary MOF/carbon based composites (MOF/Carbon nitride/Graphene oxide) (novel binary (NH<sub>2</sub>-MIL-88B(Fe)/g-C<sub>3</sub>N<sub>4</sub>) (MOF/Carbon nitride) and ternary (NH<sub>2</sub>-MIL-88B(Fe)/g-C<sub>3</sub>N<sub>4</sub>/GO) (MOF/Carbon nitride/Graphene oxide) composites) were synthesized and used as photocatalysts for the elimination of Direct Red 23 (D-Red23) and Tetracycline Hydrochloride (TC-H). NH<sub>2</sub>-MIL-88B(Fe)/g-C<sub>3</sub>N<sub>4</sub>/GO (MILB/g/GO) ternary composites with three different amounts of GO including 3, 7, and 11 wt% were synthesized and denoted as MILB/g/(3%)GO, MILB/g/(7%)GO, and MILB/g/(11%)GO. g-C<sub>3</sub>N<sub>4</sub> and GO (with three different amounts 3, 7, and 11 wt%) were incorporated to synthesize MILB/g/(3%)GO, MILB/g/(7%)GO and MILB/g/(11%)GO ternary composites. Several analyses were used to characterize the materials. The MILB/g/(3%)GO demonstrated the highest pollutant degradation efficiency. The degradation rate of dye and Tetracycline after 70 min of light radiation using MILB/g/(3%)GO in a photo-Fenton-like reaction was about 99% and 96%, respectively. The creation of a heterojunction structure using g-C<sub>3</sub>N<sub>4</sub>, and the simultaneous incorporation of the optimum amount of GO led to a remarkable amelioration in photocatalytic properties and the extraordinary performance of MILB/g/(3%)GO in the pollutants degradation process.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 359-376"},"PeriodicalIF":9.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141143083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Wang , Gang Song , Mengjuan Zhang , Kaixuan Yang , Zhenglin Wang , Xin Jia , Qingya Liu , Liguo Zhou , Zhennan Han , Shurong Wang , Jianguo Bian , Guangwen Xu
{"title":"Fluidized bed two-stage O2/steam gasification of agricultural biomass for low-tar syngas: An industrial-scale verification test","authors":"Chao Wang , Gang Song , Mengjuan Zhang , Kaixuan Yang , Zhenglin Wang , Xin Jia , Qingya Liu , Liguo Zhou , Zhennan Han , Shurong Wang , Jianguo Bian , Guangwen Xu","doi":"10.1016/j.crcon.2025.100342","DOIUrl":"10.1016/j.crcon.2025.100342","url":null,"abstract":"<div><div>In the complete green synthesis technology chain, bio-syngas production remains the “first hurdle”. Especially, the “tar” problem in biomass gasification urgently needs to be solved. Recently, our team, in collaboration with Jinan Huangtai Gas Stove Co., Ltd., completed a 10,000-ton industrial test and technical verification of fluidized bed two-stage O<sub>2</sub>/steam gasification for production of syngas from biomass. The test results showed that the fluidized bed two-stage gasification was operated continuously and stably for over 110 h with various biomass feedstocks. Additionally, the lowest tar content in the produced gas reached 0.58 g/Nm<sup>3</sup>. The fly ash collected from the continuous test contained carbon of about 30 wt%. Thus, the technology was well proved for large-scale biomass gasification and production of syngas in terms of technical feasibility and operational stability.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 2","pages":"Article 100342"},"PeriodicalIF":6.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144329621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shixin Xue, Mingxiao Li, Raymond Lopez-rios, Jingwei Ling, Zhengdong Gao, Qili Hu, Tian Qiu, Jeremy Staffa, Lin Chang, Heming Wang, Chao Xiang, John E. Bowers, Qiang Lin
{"title":"Pockels laser directly driving ultrafast optical metrology","authors":"Shixin Xue, Mingxiao Li, Raymond Lopez-rios, Jingwei Ling, Zhengdong Gao, Qili Hu, Tian Qiu, Jeremy Staffa, Lin Chang, Heming Wang, Chao Xiang, John E. Bowers, Qiang Lin","doi":"10.1038/s41377-025-01872-4","DOIUrl":"https://doi.org/10.1038/s41377-025-01872-4","url":null,"abstract":"<p>The invention of the laser unleashed the potential of optical metrology, leading to numerous advancements in modern science and technology. This reliance on lasers, however, also introduces a bottleneck for precision optical metrology, as it requires sophisticated photonic infrastructure for precise laser-wave control, leading to limited metrology performance and significant system complexity. Here, we take a key step toward overcoming this challenge by demonstrating a Pockels laser with multifunctional capabilities that elevate optical metrology to a new level. The chip-scale laser achieves a narrow intrinsic linewidth down to 167 Hz and a broad mode-hop-free tuning range up to 24 GHz. In particular, it delivers an unprecedented frequency chirping rate of up to 20 EHz/s and an exceptional modulation bandwidth exceeding 10 GHz, both of which are orders of magnitude greater than those of existing lasers. Leveraging this laser, we successfully achieve velocimetry at 40 m/s over a short distance of 0.4 m, and measurable velocities up to the first cosmic velocity at 1 m away—a feat unattainable with conventional ranging approaches. At the same time, we achieve distance metrology with a ranging resolution of <2 cm. Furthermore, for the first time to our knowledge, we implement a dramatically simplified architecture for laser frequency stabilization by directly locking the laser to an external reference gas cell without requiring additional external light control. This approach enables long-term laser stability with a frequency fluctuation of only ±6.5 MHz over 60 min. The demonstrated Pockels laser combines elegantly high laser coherence with ultrafast frequency reconfigurability and superior multifunctional capability. We envision its profound impact across diverse fields including communication, sensing, autonomous driving, quantum information processing, and beyond.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144176632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalable miniature on-chip Fourier transform spectrometer for Raman spectroscopy","authors":"Sarp Kerman, Xiao Luo, Zuoqin Ding, Zhewei Zhang, Zhuo Deng, Xiaofei Qin, Yuran Xu, Shuhua Zhai, Chang Chen","doi":"10.1038/s41377-025-01861-7","DOIUrl":"https://doi.org/10.1038/s41377-025-01861-7","url":null,"abstract":"<p>Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrate into compact devices such as wearables. Waveguide-based Fourier Transform Spectrometers (FTS) enable compact spectrometers, and multi-aperture designs can achieve high throughput for applications such as Raman spectroscopy; however, experimental research in this domain remains limited. In this work, we present a multi-aperture SiN waveguide-based FTS overcoming these limitations and enabling Raman spectroscopy of isopropyl alcohol, glucose, Paracetamol, and Ibuprofen with enhanced throughput. Our spectrometer chip, fabricated on a 200 mm SiN wafer, with 160 edge-coupled waveguide apertures connected to an array of ultra-compact interferometers and a small footprint of just 1.6 mm × 3.2 mm, achieves a spectral range of 40 nm and a resolution of 0.5 nm. Experimental results demonstrate that the least absolute shrinkage and selection operator (LASSO) regression significantly enhances Raman spectrum reconstruction. Our work on waveguide-based spectrometry paves the way for integrating accurate and compact Raman sensors into consumer electronics and space exploration instruments.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144176644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanouil G. Mavrotsoupakis, Leonidas Mouchliadis, Junhui Cao, Minoas C. Chairetis, Marios E. Triantafyllou-Rundell, Eleni C. P. Macropulos, Giannis G. Paschos, Apostolos Pantousas, Huaying Liu, Alexey V. Kavokin, Hamid Ohadi, Constantinos C. Stoumpos, Pavlos G. Savvidis
{"title":"Unveiling asymmetric topological photonic states in anisotropic 2D perovskite microcavities","authors":"Emmanouil G. Mavrotsoupakis, Leonidas Mouchliadis, Junhui Cao, Minoas C. Chairetis, Marios E. Triantafyllou-Rundell, Eleni C. P. Macropulos, Giannis G. Paschos, Apostolos Pantousas, Huaying Liu, Alexey V. Kavokin, Hamid Ohadi, Constantinos C. Stoumpos, Pavlos G. Savvidis","doi":"10.1038/s41377-025-01852-8","DOIUrl":"https://doi.org/10.1038/s41377-025-01852-8","url":null,"abstract":"<p>Photonic Rashba-Dresselhaus coupling in anisotropic microcavities offers a compelling platform for realizing unconventional topological states with non-zero Berry curvature. In this study, we explore a self-assembled two-dimensional hybrid structure composed of anisotropically oriented organic/inorganic halide perovskite layers confined within a microcavity. The strong optical anisotropies of these perovskite systems, driven by significant refractive index contrasts and robust excitonic resonances at room temperature, enable the emergence of synthetic magnetic fields that mediate photonic and polaritonic interactions. The interplay between polarization-dependent modes and spatial inversion symmetry breaking gives rise to strong photonic Rashba-Dresselhaus spin-orbit coupling, leading to distinct modifications in band topology and energy dispersions. These effects result in the formation of unconventional topological features, including non-zero Berry curvature and off-axis diabolical points, within the photonic and polaritonic bands at room temperature. Our findings reveal the critical role of optical and geometric anisotropies in engineering synthetic gauge fields for light, providing a versatile approach for designing photonic systems with novel topological properties. By leveraging the unique properties of halide perovskites and their ability to support both room-temperature excitons and large birefringence, this work advances the development of polaritonic platforms for applications in topological photonics and spinoptronics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"209 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144165274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}